%GA(Generic Algorithm) Program to optimize PID Parameters
clear all;
close all;
global rin yout timef
Size=30;
CodeL=3;
MinX(1)=zeros(1);
MaxX(1)=20*ones(1);
MinX(2)=zeros(1);
MaxX(2)=1.0*ones(1);
MinX(3)=zeros(1);
MaxX(3)=1.0*ones(1);
Kpid(:,1)=MinX(1)+(MaxX(1)-MinX(1))*rand(Size,1);
Kpid(:,2)=MinX(2)+(MaxX(2)-MinX(2))*rand(Size,1);
Kpid(:,3)=MinX(3)+(MaxX(3)-MinX(3))*rand(Size,1);
G=100;
BsJ=0;
%*************** Start Running ***************
for kg=1:1:G
time(kg)=kg;
%****** Step 1 : Evaluate BestJ ******
for i=1:1:Size
Kpidi=Kpid(i,:);
[Kpidi,BsJ]=chap5_3f(Kpidi,BsJ);
BsJi(i)=BsJ;
end
[OderJi,IndexJi]=sort(BsJi);
BestJ(kg)=OderJi(1);
BJ=BestJ(kg);
Ji=BsJi+1e-10; %Avoiding deviding zero
fi=1./Ji;
% Cm=max(Ji);
% fi=Cm-Ji;
[Oderfi,Indexfi]=sort(fi); %Arranging fi small to bigger
Bestfi=Oderfi(Size); %Let Bestfi=max(fi)
BestS=Kpid(Indexfi(Size),:); %Let BestS=E(m), m is the Indexfi belong to max(fi)
kg
BJ
BestS
%****** Step 2 : Select and Reproduct Operation******
fi_sum=sum(fi);
fi_Size=(Oderfi/fi_sum)*Size;
fi_S=floor(fi_Size); % Selecting Bigger fi value
r=Size-sum(fi_S);
Rest=fi_Size-fi_S;
[RestValue,Index]=sort(Rest);
for i=Size:-1:Size-r+1
fi_S(Index(i))=fi_S(Index(i))+1; % Adding rest to equal Size
end
k=1;
for i=Size:-1:1 % Select the Sizeth and Reproduce firstly
for j=1:1:fi_S(i)
TempE(k,:)=Kpid(Indexfi(i),:); % Select and Reproduce
k=k+1; % k is used to reproduce
end
end
%************ Step 3 : Crossover Operation ************
Pc=0.90;
for i=1:2:(Size-1)
temp=rand;
if Pc>temp %Crossover Condition
alfa=rand;
TempE(i,:)=alfa*Kpid(i+1,:)+(1-alfa)*Kpid(i,:);
TempE(i+1,:)=alfa*Kpid(i,:)+(1-alfa)*Kpid(i+1,:);
end
end
TempE(Size,:)=BestS;
Kpid=TempE;
%************ Step 4: Mutation Operation **************
Pm=0.10-[1:1:Size]*(0.01)/Size; %Bigger fi,smaller Pm
Pm_rand=rand(Size,CodeL);
Mean=(MaxX + MinX)/2;
Dif=(MaxX-MinX);
for i=1:1:Size
for j=1:1:CodeL
if Pm(i)>Pm_rand(i,j) %Mutation Condition
TempE(i,j)=Mean(j)+Dif(j)*(rand-0.5);
end
end
end
%Guarantee TempE(Size,:) belong to the best individual
TempE(Size,:)=BestS;
Kpid=TempE;
end
Bestfi
BestS
Best_J=BestJ(G)
figure(1);
plot(time,BestJ);
xlabel('Times');ylabel('Best J');
figure(2);
plot(timef,rin,'r',timef,yout,'b');
xlabel('Time(s)');ylabel('rin,yout');