这是模式识别方面的电子书籍

源代码在线查看: nlfisherm.m

软件大小: 2592 K
上传用户: autojacky
关键词: 模式识别 方面 书籍 电子
下载地址: 免注册下载 普通下载 VIP

相关代码

				%NLFISHERM Non-linear Fisher Mapping according to Marco Loog				% 				%   W = NLFISHERM(A,N)				% 				% INPUT				%   A   Dataset				%   N   Number of dimensions (optional; default: MIN(K,C)-1, where				%       K is the dimensionality of A and C is the number of classes)				%				% OUTPUT				%   W   Non-linear Fisher mapping				%				% DESCRIPTION  				% Finds a mapping of the labeled dataset A to a N-dimensional linear 				% subspace emphasizing the class separability for neighboring classes.				% 				% REFERENCES				% 1. R. Duin, M. Loog and R. Haeb-Umbach, Multi-Class Linear Feature 				% Extraction by Nonlinear PCA, in: ICPR15, 15th Int. Conf. on Pattern 				% Recognition, vol.2, IEEE Computer Society Press, 2000, 398-401.				% 2. M. Loog, R.P.W. Duin and R. Haeb-Umbach, Multiclass Linear Dimension				% Reduction by Weighted Pairwise Fisher Criteria, IEEE Trans. on				% Pattern Analysis and Machine Intelligence, vol.23, no.7, 2001, 762-766.				%				% SEE ALSO				% MAPPINGS, DATASETS, FISHERM, KLM, PCA								% Copyright: M. Loog, R.P.W. Duin, duin@ph.tn.tudelft.nl				% Faculty of Applied Physics, Delft University of Technology				% P.O. Box 5046, 2600 GA Delft, The Netherlands								% $Id: nlfisherm.m,v 1.3 2007/04/21 23:04:38 duin Exp $								function W = nlfisherm(a,n)					prtrace(mfilename);									if (nargin < 2)  						n = []; 					end									% No input data, an untrained mapping returned.					if (nargin < 1) | (isempty(a))						W = mapping('nlfisherm',n);						W = setname(W,'Non-linear Fisher mapping');						return;					end									islabtype(a,'crisp');					isvaldfile(a,1,2); % at least 2 objects per class, 2 classes					a = testdatasize(a);										[m,k,c] = getsize(a);					prior = getprior(a);					a = setprior(a,prior);					if (isempty(n))						n = min(k,c)-1;						prwarning(4,'Dimensionality N not supplied, assuming MIN(K,C)-1.');					end									if (n >= m) | (n >= c)						error('Dataset too small or has too few classes for demanded output dimensionality.')					end									% Non-linear Fisher mapping is determined by the eigenvectors of CW^{-1}*CB,				  % where CW is the within-scatter, understood as the averaged covariance 					% matrix weighted by the prior probabilities, and CB is the between-scatter,					% modified in a nonlinear way.					% To simplify the computations, CW can be set to the identity matrix.					w = klms(a);						 					% A is changed such that CW = I and the mean of A is shifted to the origin.					b = a*w;												k = size(b,2);					u = +meancov(b);					d = +distm(u);				% D is the Mahalanobis distance between the classes.  									% Compute the weights E to be used in the modified between-scatter matrix G					% E should diminish the influence of large distances D.					e = 0.5*erf(sqrt(d)/(2*sqrt(2))); 					G = zeros(k,k);					for j = 1:c						for i=j+1:c							% Marco-Loog Mapping							G = G + prior(i)*prior(j)*e(i,j)*(u(j,:)-u(i,:))'*(u(j,:)-u(i,:))/d(i,j); 							G = (G + G')/2;		% Avoid a numerical inaccuracy: cov. matrix should be symmetric!						end					end									% Perform the eigendecomposition of the modified between-scatter matrix.					[F,V] = eig(G); 								[v,I] = sort(-diag(V)); 					I = I(1:n);					rot = F(:,I);					off = -mean(b*F(:,I));									% After non-linear transformations, NLFISHERM is stored as an affine (linear) map.					W = affine(rot,off,a);					W = setname(w*W,'Non-linear Fisher mapping');								return;							

相关资源