模式识别工具箱,本人毕业论文时用到的,希望对大家有用!

源代码在线查看: nlfisherm.m

软件大小: 568 K
上传用户: chenqiyun1990
关键词: 模式识别 工具箱 毕业论文
下载地址: 免注册下载 普通下载 VIP

相关代码

				%NLFISHERM Non-linear Fisher Mapping				% 				% 	W = nlfisherm(A,n)				% 				% Finds a mapping of the labeled dataset A to a n-dimensional  				% linear subspace emphasizing the class separability for neighboring 				% classes.				% 				% See also datasets, mappings, fisherm, klm								% Copyright: M. Loog, R.P.W. Duin, duin@ph.tn.tudelft.nl				% Faculty of Applied Physics, Delft University of Technology				% P.O. Box 5046, 2600 GA Delft, The Netherlands								function W = nlfisherm(a,n)				if nargin == 1,  n = []; end				if nargin == 0 | isempty(a)				        W = mapping('nlfisherm',n);				        return				end				[nlab,lablist,m,k,c,p,fl,imheight] = dataset(a);				if isempty(n), n = min(k,c)-1; end				if n >= m | n >= c				        error('Dataset too small or or has too few classes for demanded output dimensionality')				end				w = klms(a);				a = a*w;				k = size(a,2);				if isempty(n), n = k; end				if n >= m				        error('Dataset too small or singular for demanded output dimensionality')				end				u = meancov(a);				d = +distm(u);				e = 0.5*erf(sqrt(d)/(2*sqrt(2)));				G = zeros(k,k);				for j = 1:c					for i=j+1:c						G = G + p(i)*p(j)*e(i,j)*(u(j,:)-u(i,:))'*(u(j,:)-u(i,:))/d(i,j); % Marco Loog Mapping (wrong?)						G = (G + G')/2;						%G = G + (u(j,:)-u(i,:))'*(u(j,:)-u(i,:)); % about lda					end				end				[F,V] = eig(G); 				[v,I] = sort(-diag(V)); 				I = I(1:n);				R = [F(:,I);-mean(a*F(:,I))];				W = w*mapping('affine',R,[],k,n,1,imheight);							

相关资源