无约束连续函数优化的人工蚁群算法通用MATLAB源码 (2008-11-15 09:48:37)
标签:杂谈
题目:无约束连续函数优化的人工蚁群算法通用MATLAB源码
此源码是对人工蚁群算法的一种实现,用于无约束连续函数的优化求解,对于含有约束的情况,可以先使用罚函数等方法,把问题处理成无约束的模型,再使用本源码进行求解,本源码由GreenSim团队原创,转载请注明,有意购买源码或代写相关程序,请与GreenSim团队联系(主页http://blog.sina.com.cn/greensim)。
function [BESTX,BESTY,ALLX,ALLY]=ACOUCP(K,N,Rho,Q,Lambda,LB,UB)
%% Ant Colony Optimization for Unconstrained Continuous Problem
%% ACOUCP.m
%% 无约束连续函数的蚁群优化算法
%% 此函数实现蚁群算法,用于求解无约束连续函数最小化问题
%% 对于最大化问题,请先将其加负号转化为最小化问题
% GreenSim团队原创作品,转载请注明
% Email:greensim@163.com
% GreenSim团队主页:http://blog.sina.com.cn/greensim
% [color=red]欢迎访问GreenSim——算法仿真团队→[url=http://blog.sina.com.cn/greensim]http://blog.sina.com.cn/greensim[/url][/color]
%% 输入参数列表
% K 迭代次数
% N 蚁群规模
% Rho 信息素蒸发系数,取值0~1之间,推荐取值0.7~0.95
% Q 信息素增加强度,大于0,推荐取值1左右
% Lambda 蚂蚁爬行速度,取值0~1之间,推荐取值0.1~0.5
% LB 决策变量的下界,M×1的向量
% UB 决策变量的上界,M×1的向量
%% 输出参数列表
% BESTX K×1细胞结构,每一个元素是M×1向量,记录每一代的最优蚂蚁
% BESTY K×1矩阵,记录每一代的最优蚂蚁的评价函数值
% ALLX K×1细胞结构,每一个元素是M×N矩阵,记录每一代蚂蚁的位置
% ALLY K×N矩阵,记录每一代蚂蚁的评价函数值
%% 测试函数设置
% 测试函数用单独的子函数编写好,在子函数FIT.m中修改要调用的测试函数名即可
% 注意:决策变量的下界LB和上界UB,要与测试函数保持一致
%% 参考设置
% [BESTX,BESTY,ALLX,ALLY]=ACOUCP(50,30,0.95,1,0.5,LB,UB)
%% 第一步:初始化
M=length(LB);%决策变量的个数
%蚁群位置初始化
X=zeros(M,N);
for i=1:M
x=unifrnd(LB(i),UB(i),1,N);
X(i,:)=x;
end
%输出变量初始化
ALLX=cell(K,1);%细胞结构,每一个元素是M×N矩阵,记录每一代的个体
ALLY=zeros(K,N);%K×N矩阵,记录每一代评价函数值
BESTX=cell(K,1);%细胞结构,每一个元素是M×1向量,记录每一代的最优个体
BESTY=zeros(K,1);%K×1矩阵,记录每一代的最优个体的评价函数值
k=1;%迭代计数器初始化
Tau=ones(1,N);%信息素初始化
Y=zeros(1,N);%适应值初始化
%% 第二步:迭代过程
while k YY=zeros(1,N);
for n=1:N
x=X(:,n);
YY(n)=FIT(x);
end
maxYY=max(YY);
temppos=find(YY==maxYY);
POS=temppos(1);
%蚂蚁随机探路
for n=1:N
if n~=POS
x=X(:,n);
Fx=FIT(x);
mx=GaussMutation(x,LB,UB);
if Fmx X(:,n)=mx;
Y(n)=Fmx;
elseif rand>1-(1/(sqrt(k)))
X(:,n)=mx;
Y(n)=Fmx;
else
X(:,n)=x;
Y(n)=Fx;
end
end
end
for n=1:N
if n~=POS
x=X(:,n);
Fx=FIT(x);
mx=GaussMutation(x,LB,UB);
Fmx=FIT(mx);
if Fmx Y(n)=Fmx;
elseif rand>1-(1/(sqrt(k)))
X(:,n)=mx;
Y(n)=Fmx;
else
X(:,n)=x;
Y(n)=Fx;
end
end
end
%朝信息素最大的地方移动
for n=1:N
if n~=POS
x=X(:,n);
r=(K+k)/(K+K);
p=randperm(N);
t=ceil(r*N);
pos=p(1:t);
TempTau=Tau(pos);
maxTempTau=max(TempTau);
pos3=pos(pos2(1));
x2=X(:,pos3(1));
x3=(1-Lambda)*x+Lambda*x2;
Fx=FIT(x);
Fx3=FIT(mx);
if Fx3 X(:,n)=x3;
Y(n)=Fx3;
elseif rand>1-(1/(sqrt(k)))
X(:,n)=x3;
Y(n)=Fx3;
else
X(:,n)=x;
Y(n)=Fx;
end
end
end
%更新信息素并记录
Tau=Tau*(1-Rho);
maxY=max(Y);
minY=min(Y);
DeltaTau=(maxY-Y)/(maxY-minY);
Tau=Tau+Q*DeltaTau;
ALLX{k}=X;
ALLY(k,:)=Y;
minY=min(Y);
pos4=find(Y==minY);
BESTX{k}=X(:,pos4(1));
BESTY(k)=minY;
disp(k);
k=k+1;
end
%% 绘图
BESTY2=BESTY;
BESTX2=BESTX;
for k=1:K
TempY=BESTY(1:k);
minTempY=min(TempY);
posY=find(TempY==minTempY);
BESTY2(k)=minTempY;
BESTX2{k}=BESTX{posY(1)};
end
BESTY=BESTY2;
BESTX=BESTX2;
plot(BESTY,'-ko','MarkerEdgeColor','k','MarkerFaceColor','k','MarkerSize',2)
ylabel('函数值')
xlabel('迭代次数')
grid on
欢迎访问GreenSim团队主页:http://blog.sina.com.cn/greensim
[color=red]欢迎访问GreenSim——算法仿真团队→[url=http://blog.sina.com.cn/greensim]http://blog.sina.com.cn/greensim[/url][/color]