// dct.i (based on dct/dct.i)
// Ujval Kapasi
// 1/22/97
// 3/28/97
// 7/22/97
//
// 8x8 DCT (for JPEG and MPEG)
//
// From Pennebaker/Mitchell, pg. 50-52. See also Arai, Agui, Nakajima.
// This algorithm is based on the 16-pt DFT. Basically, the 8-pt DCT can
// be calculated by scaling the real parts of the output of the 16-pt DFT.
//
// This code performs two DCTs every iteration of the loop. Thus the input
// data must have one 8x8 block in the upper 16 bits of every word, and another
// 8x8 block in the lower 16 bits of every word.
kernel dct(istream consts,
istream datain,
ostream out)
{
// DCT constants
// Stored in 2.14 format
// COS_2 = 0x2d412d41; // cos(2*pi/8) || cos(2*pi/8);
// COS_3 = 0x187e187e; // cos(3*pi/8) || cos(3*pi/8);
// COS_1_plus_COS_3 = 0x539f539f; // cos(pi/8) + cos(3*pi/8) || same
// COS_1_minus_COS_3 = 0x22a322a3; // cos(pi/8) - cos(3*pi/8) || same
half2 COS_2, COS_3, COS_1_plus_COS_3, COS_1_minus_COS_3;
consts >> COS_2 >> COS_3 >> COS_1_plus_COS_3 >> COS_1_minus_COS_3;
// Stored in 2.14 format
// K0 = 0x16a116a1 // 0.25 * sqrt(2) || 0.25 * sqrt(2);
// K1 = 0x10501050 // 0.25 * sec(pi/16) || 0.25 * sec(pi/16);
// K2 = 0x11511151 // 0.25 * sec(2*pi/16) || 0.25 * sec(2*pi/16);
// K3 = 0x133e133e // 0.25 * sec(3*pi/16) || 0.25 * sec(3*pi/16);
// K4 = 0x16a116a1 // 0.25 * sec(4*pi/16) || 0.25 * sec(4*pi/16);
// K5 = 0x1ccd1ccd // 0.25 * sec(5*pi/16) || 0.25 * sec(5*pi/16);
// K6 = 0x29cf29cf // 0.25 * sec(6*pi/16) || 0.25 * sec(6*pi/16);
// K7 = 0x52035203 // 0.25 * sec(7*pi/16) || 0.25 * sec(7*pi/16);
half2 K0, K1, K2, K3, K4, K5, K6, K7;
consts >> K0 >> K1 >> K2 >> K3 >> K4 >> K5 >> K6 >> K7;
// SP arrays (not really persistent)
array buf1(8); // intermediate dct output. ie, do rows then
array buf2(8); // store here. Then index into this
// differently to get the columns
// Comm permutations used to transpose the block
uc perm_a = 0x07654321;
uc perm_b = 0x10765432;
uc perm_c = 0x21076543;
uc perm_d = 0x32107654;
uc perm_e = 0x43210765;
uc perm_f = 0x54321076;
uc perm_g = 0x65432107;
int src_idx = 0;
int idx0 = cid();
int idx1 = (idx0 - 1) & 7;
int idx2 = (idx0 - 2) & 7;
int idx3 = (idx0 - 3) & 7;
int idx4 = (idx0 - 4) & 7;
int idx5 = (idx0 - 5) & 7;
int idx6 = (idx0 - 6) & 7;
int idx7 = (idx0 - 7) & 7;
loop_stream(datain) pipeline(1) {
half2 a0, a1, a2, a3, a4, a5, a6, a7;
datain >> a0 >> a1 >> a2 >> a3 >> a4 >> a5 >> a6 >> a7;
// do the 1d dct
half2 s16, s07, s25, s34, s1625, s0734;
s07 = a0 + a7;
s16 = a1 + a6;
s25 = a2 + a5;
s34 = a3 + a4;
s1625 = s16 + s25;
s0734 = s07 + s34;
// 12 OPS (count double because we are using half2's)
half2 d16, d07, d25, d34, d1625, d0734;
d07 = a0 - a7;
d16 = a1 - a6;
d25 = a2 - a5;
d34 = a3 - a4;
d1625 = s16 - s25;
d0734 = s07 - s34;
// 12 OPS
half2 sd16d07, sd25d34;
sd16d07 = d07 + d16;
sd25d34 = d25 + d34;
// 4 OPS
half2 m1_over_2, m2, m5, m6, m7, m8, m9;
// All results in 16.0
m1_over_2 = s0734 + s1625;
m2 = s0734 - s1625;
m5 = hi(COS_2 * shift(d1625 + d0734, 2));
m6 = hi(COS_2 * shift(d25 + d16, 2));
m7 = hi(COS_3 * shift(sd16d07 - sd25d34, 2));
m8 = hi((COS_1_plus_COS_3) * shift(sd16d07, 2));
m9 = hi((COS_1_minus_COS_3) * shift(sd25d34, 2));
// 30 OPS
half2 s5, s6, s7, s8;
s5 = d07 + m6;
s6 = d07 - m6;
s7 = m8 - m7;
s8 = m9 - m7;
// 8 OPS
// All results in 16.0
buf1[0] = hi(K0 * shift(m1_over_2, 2));
buf1[1] = hi(K1 * shift(s5 + s7, 2));
buf1[2] = hi(K2 * shift(d0734 + m5, 2));
buf1[3] = hi(K3 * shift(s6 - s8, 2));
buf1[4] = hi(K4 * shift(m2, 2));
buf1[5] = hi(K5 * shift(s6 + s8, 2));
buf1[6] = hi(K6 * shift(d0734 - m5, 2));
buf1[7] = hi(K7 * shift(s5 - s7, 2));
// 44 OPS
// Do comm stuff to transpose the matrix to do rows now
buf2[idx0] = buf1[idx0];
buf2[idx7] = commucperm(perm_a, buf1[idx1]);
buf2[idx6] = commucperm(perm_b, buf1[idx2]);
buf2[idx5] = commucperm(perm_c, buf1[idx3]);
buf2[idx4] = commucperm(perm_d, buf1[idx4]);
buf2[idx3] = commucperm(perm_e, buf1[idx5]);
buf2[idx2] = commucperm(perm_f, buf1[idx6]);
buf2[idx1] = commucperm(perm_g, buf1[idx7]);
// 0 OPS
// get a's from scratchpad -- In 16.0 format
a0 = buf2[0];
a1 = buf2[1];
a2 = buf2[2];
a3 = buf2[3];
a4 = buf2[4];
a5 = buf2[5];
a6 = buf2[6];
a7 = buf2[7];
s07 = a0 + a7;
s16 = a1 + a6;
s25 = a2 + a5;
s34 = a3 + a4;
s1625 = s16 + s25;
s0734 = s07 + s34;
// 12 OPS
d07 = a0 - a7;
d16 = a1 - a6;
d25 = a2 - a5;
d34 = a3 - a4;
d1625 = s16 - s25;
d0734 = s07 - s34;
// 12 OPS
sd16d07 = d07 + d16;
sd25d34 = d25 + d34;
// 4 OPS
// All results in 16.0
m1_over_2 = s0734 + s1625;
m2 = s0734 - s1625;
m5 = hi(COS_2 * shift(d1625 + d0734, 2));
m6 = hi(COS_2 * shift(d25 + d16, 2));
m7 = hi(COS_3 * shift(sd16d07 - sd25d34, 2));
m8 = hi((COS_1_plus_COS_3) * shift(sd16d07, 2));
m9 = hi((COS_1_minus_COS_3) * shift(sd25d34, 2));
// 30 OPS
s5 = d07 + m6;
s6 = d07 - m6;
s7 = m8 - m7;
s8 = m9 - m7;
// 8 OPS
half2 d0, d1, d2, d3, d4, d5, d6, d7;
// All results in 16.0
d0 = hi(K0 * shift(m1_over_2, 2));
d1 = hi(K1 * shift(s5 + s7, 2));
d2 = hi(K2 * shift(d0734 + m5, 2));
d3 = hi(K3 * shift(s6 - s8, 2));
d4 = hi(K4 * shift(m2, 2));
d5 = hi(K5 * shift(s6 + s8, 2));
d6 = hi(K6 * shift(d0734 - m5, 2));
d7 = hi(K7 * shift(s5 - s7, 2));
// 44 OPS
// TOTAL : 220 OPS per lop iter per cluster
// 1760 OPS TOTAL for 8 clusters
///////////////////////////////////
// --> 110 OPS per BLOCK //
// 880 OPS total //
///////////////////////////////////
out }
}