// square.cpp - written and placed in the public domain by Wei Dai
// Based on Paulo S.L.M. Barreto's public domain implementation
#include "pch.h"
#include "square.h"
#include "gf256.h"
NAMESPACE_BEGIN(CryptoPP)
// apply theta to a roundkey
static void SquareTransform (word32 in[4], word32 out[4])
{
static const byte G[4][4] =
{
0x02U, 0x01U, 0x01U, 0x03U,
0x03U, 0x02U, 0x01U, 0x01U,
0x01U, 0x03U, 0x02U, 0x01U,
0x01U, 0x01U, 0x03U, 0x02U
};
GF256 gf256(0xf5);
for (int i = 0; i < 4; i++)
{
word32 temp = 0;
for (int j = 0; j < 4; j++)
for (int k = 0; k < 4; k++)
temp ^= (word32)gf256.Multiply(GETBYTE(in[i], 3-k), G[k][j]) out[i] = temp;
}
}
SquareBase::SquareBase(const byte *userKey, CipherDir dir)
: roundkeys(ROUNDS+1)
{
static const word32 offset[ROUNDS] = {
0x01000000UL, 0x02000000UL, 0x04000000UL, 0x08000000UL,
0x10000000UL, 0x20000000UL, 0x40000000UL, 0x80000000UL,
};
memcpy(roundkeys[0], userKey, KEYLENGTH);
#ifdef IS_LITTLE_ENDIAN
byteReverse(roundkeys[0], roundkeys[0], KEYLENGTH);
#endif
/* apply the key evolution function */
for (int i = 1; i < ROUNDS+1; i++)
{
roundkeys[i][0] = roundkeys[i-1][0] ^ rotl (roundkeys[i-1][3], 8U) ^ offset[i-1];
roundkeys[i][1] = roundkeys[i-1][1] ^ roundkeys[i][0];
roundkeys[i][2] = roundkeys[i-1][2] ^ roundkeys[i][1];
roundkeys[i][3] = roundkeys[i-1][3] ^ roundkeys[i][2];
}
/* produce the round keys */
if (dir == ENCRYPTION)
{
for (int i = 0; i < ROUNDS; i++)
SquareTransform (roundkeys[i], roundkeys[i]);
}
else
{
for (int i = 0; i < ROUNDS/2; i++)
for (int j = 0; j < 4; j++)
std::swap(roundkeys[i][j], roundkeys[ROUNDS-i][j]);
SquareTransform (roundkeys[ROUNDS], roundkeys[ROUNDS]);
}
}
#define MSB(x) (((x) >> 24) & 0xffU) /* most significant byte */
#define SSB(x) (((x) >> 16) & 0xffU) /* second in significance */
#define TSB(x) (((x) >> 8) & 0xffU) /* third in significance */
#define LSB(x) (((x) ) & 0xffU) /* least significant byte */
#define squareRound(text, temp, T0, T1, T2, T3, roundkey) \
{ \
temp[0] = T0[MSB (text[0])] \
^ T1[MSB (text[1])] \
^ T2[MSB (text[2])] \
^ T3[MSB (text[3])] \
^ roundkey[0]; \
temp[1] = T0[SSB (text[0])] \
^ T1[SSB (text[1])] \
^ T2[SSB (text[2])] \
^ T3[SSB (text[3])] \
^ roundkey[1]; \
temp[2] = T0[TSB (text[0])] \
^ T1[TSB (text[1])] \
^ T2[TSB (text[2])] \
^ T3[TSB (text[3])] \
^ roundkey[2]; \
temp[3] = T0[LSB (text[0])] \
^ T1[LSB (text[1])] \
^ T2[LSB (text[2])] \
^ T3[LSB (text[3])] \
^ roundkey[3]; \
} /* squareRound */
#define squareFinal(text, temp, S, roundkey) \
{ \
text[0] = ((word32) (S[MSB (temp[0])]) ^ ((word32) (S[MSB (temp[1])]) ^ ((word32) (S[MSB (temp[2])]) ^ (word32) (S[MSB (temp[3])]) \
^ roundkey[0]; \
text[1] = ((word32) (S[SSB (temp[0])]) ^ ((word32) (S[SSB (temp[1])]) ^ ((word32) (S[SSB (temp[2])]) ^ (word32) (S[SSB (temp[3])]) \
^ roundkey[1]; \
text[2] = ((word32) (S[TSB (temp[0])]) ^ ((word32) (S[TSB (temp[1])]) ^ ((word32) (S[TSB (temp[2])]) ^ (word32) (S[TSB (temp[3])]) \
^ roundkey[2]; \
text[3] = ((word32) (S[LSB (temp[0])]) ^ ((word32) (S[LSB (temp[1])]) ^ ((word32) (S[LSB (temp[2])]) ^ (word32) (S[LSB (temp[3])]) \
^ roundkey[3]; \
} /* squareFinal */
static inline void GetBlock(const byte *inBlock, word32 *text)
{
#ifdef IS_LITTLE_ENDIAN
byteReverse(text, (word32 *)inBlock, SquareBase::BLOCKSIZE);
#else
memcpy(text, inBlock, SquareBase::BLOCKSIZE);
#endif
}
static inline void PutBlock(byte *outBlock, const word32 *text)
{
#ifdef IS_LITTLE_ENDIAN
byteReverse((word32 *)outBlock, text, SquareBase::BLOCKSIZE);
#else
memcpy(outBlock, text, SquareBase::BLOCKSIZE);
#endif
}
void SquareEncryption::ProcessBlock(const byte *inBlock, byte * outBlock) const
{
word32 text[4], temp[4];
GetBlock(inBlock, text);
/* initial key addition */
text[0] ^= roundkeys[0][0];
text[1] ^= roundkeys[0][1];
text[2] ^= roundkeys[0][2];
text[3] ^= roundkeys[0][3];
/* ROUNDS - 1 full rounds */
for (int i=1; i+1 {
squareRound (text, temp, Te[0], Te[1], Te[2], Te[3], roundkeys[i]);
squareRound (temp, text, Te[0], Te[1], Te[2], Te[3], roundkeys[i+1]);
}
squareRound (text, temp, Te[0], Te[1], Te[2], Te[3], roundkeys[ROUNDS-1]);
/* last round (diffusion becomes only transposition) */
squareFinal (text, temp, Se, roundkeys[ROUNDS]);
PutBlock(outBlock, text);
}
void SquareDecryption::ProcessBlock(const byte *inBlock, byte * outBlock) const
{
word32 text[4], temp[4];
GetBlock(inBlock, text);
/* initial key addition */
text[0] ^= roundkeys[0][0];
text[1] ^= roundkeys[0][1];
text[2] ^= roundkeys[0][2];
text[3] ^= roundkeys[0][3];
/* ROUNDS - 1 full rounds */
for (int i=1; i+1 {
squareRound (text, temp, Td[0], Td[1], Td[2], Td[3], roundkeys[i]);
squareRound (temp, text, Td[0], Td[1], Td[2], Td[3], roundkeys[i+1]);
}
squareRound (text, temp, Td[0], Td[1], Td[2], Td[3], roundkeys[ROUNDS-1]);
/* last round (diffusion becomes only transposition) */
squareFinal (text, temp, Sd, roundkeys[ROUNDS]);
PutBlock(outBlock, text);
}
NAMESPACE_END