SVM在MATLAB下的实现,其中有五个文件夹

源代码在线查看: display.m

软件大小: 1527 K
上传用户: xiaoluya54
关键词: MATLAB SVM 下的实现
下载地址: 免注册下载 普通下载 VIP

相关代码

				function display(net)
				
				% DISPLAY
				%
				% Display a textual representation of a support vector classifier object.
				%
				%    display(net);
				
				%
				% File        : @svc/display.m
				%
				% Date        : Wednesday 13th September 2000 
				%
				% Author      : Dr Gavin C. Cawley
				%
				% Description : Part of an object-oriented implementation of Vapnik's Support
				%               Vector Machine, as described in [1].  This file comprises the
				%               display method for the base class, a linear SVM.
				%
				% References  : [1] V.N. Vapnik,
				%                   "The Nature of Statistical Learning Theory",
				%                   Springer-Verlag, New York, ISBN 0-387-94559-8,
				%                   1995.
				%
				% History     : 16/08/1999 - v1.00
				%               12/09/2000 - v1.01 minor improvements to comments and help
				%                                  message
				%               13/09/2000 - v1.10 zeta (pattern replication factors) and C
				%                                  fields removed from svc objects
				%
				% Copyright   : (c) Dr Gavin C. Cawley, September 2000.
				%
				%    This program is free software; you can redistribute it and/or modify
				%    it under the terms of the GNU General Public License as published by
				%    the Free Software Foundation; either version 2 of the License, or
				%    (at your option) any later version.
				%
				%    This program is distributed in the hope that it will be useful,
				%    but WITHOUT ANY WARRANTY; without even the implied warranty of
				%    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
				%    GNU General Public License for more details.
				%
				%    You should have received a copy of the GNU General Public License
				%    along with this program; if not, write to the Free Software
				%    Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
				%
				
				fprintf(1,'\nsupport vector classifier:\n\n');
				fprintf(1,'   kernel = %s\n', char(net.kernel));
				fprintf(1,'   bias   = %f\n', net.bias);
				fprintf(1,'   sv     = %s\n', mat2str(net.sv));
				fprintf(1,'   w      = %s\n\n', mat2str(net.w));
				
				% bye bye...
				
							

相关资源