for entropy
H = entropy(S)
this command will evaluate the entropy of S, S should be row matrix
H = entropy([X Y Z])
this command will find the joint entropy for the 3 variables
H = entropy([X,Y],[Z,W])
this will find H(X,Y/Z,W).. you can use it for any combination of joint entropies
...
Maxim Analog Essentials are a series of plug-in peripheral modules that allow engineers to quickly test, evaluate, and integrate Maxim components into their hardware/software designs. The modules electrically and physically conform to the Digilent Pmod™ interface specification and are compatib ...
Demonstration circuit 1562A is an engineering toolto design and evaluate the LTC699X-X family ofTimerBlox circuits. The center section of the boardcontains a pre-configured TimerBlox function.DC1562A comes in twelve timing function variationsas outlined in Table 1.Surrounding the center board is a ...
PIECEWISE_EVAL: evaluates a piecewise function of x
usage: y = PIECEWISE_EVAL(x,breakpoints,funs)
arguments (input)
x - vector or array of points to evaluate though the function
breakpoints - list of n breakpoints, -inf and +inf are implicitly
Robustnesstochangesinilluminationconditionsaswellas viewing perspectives is an important requirement formany computer vision applications. One of the key fac-ors in enhancing the robustness of dynamic scene analy-sis that of accurate and reliable means for shadow de-ection. Shadowdetectioniscritical ...
This paper addresses a stochastic-#ow network in which each arc or node has several capacities and may
fail. Given the demand d, we try to evaluate the system reliability that the maximum #ow of the network is
not less than d. A simple algorithm is proposed "rstly to generate all lower boundary poin ...
This paper addresses a stochastic-#ow network in which each arc or node has several capacities and may
fail. Given the demand d, we try to evaluate the system reliability that the maximum #ow of the network is
not less than d. A simple algorithm is proposed "rstly to generate all lower boundary poin ...
This paper addresses a stochastic-#ow network in which each arc or node has several capacities and may
fail. Given the demand d, we try to evaluate the system reliability that the maximum #ow of the network is
not less than d. A simple algorithm is proposed "rstly to generate all lower boundary poin ...
This paper addresses a stochastic-#ow network in which each arc or node has several capacities and may
fail. Given the demand d, we try to evaluate the system reliability that the maximum #ow of the network is
not less than d. A simple algorithm is proposed "rstly to generate all lower boundary poin ...