Some algorithms of variable step size LMS adaptive filtering are studied.The VS—LMS algorithm is improved.
Another new non-linear function between肛and e(/ t)is established.The theoretic analysis and computer
simulation results show that this algorithm converges more quickly than the origina1. ...
In 1960, R.E. Kalman published his famous paper describing a recursive solution
to the discrete-data linear filtering problem. Since that time, due in large part to advances
in digital computing, the Kalman filter has been the subject of extensive research
and application, particularly in the area o ...
In 1960, R.E. Kalman published his famous paper describing a recursive solution to the discretedata
linear filtering problem [Kalman60]. Since that time, due in large part to advances in digital
computing, the
Kalman filter
has been the subject of extensive research and application,
particularly in ...
his paper provides a tutorial and survey of methods for parameterizing
surfaces with a view to applications in geometric modelling and computer graphics.
We gather various concepts from di® erential geometry which are relevant to surface
mapping and use them to understand the strengths and weakne ...
A one-dimensional calibration object consists of three or more collinear points with known relative positions.
It is generally believed that a camera can be calibrated only when a 1D calibration object is in planar motion or rotates
around a ¯ xed point. In this paper, it is proved that when a m ...
ITU-T G.729语音压缩算法。
description:
Fixed-point description of commendation G.729 with ANNEX B Coding of Speech at 8 kbit/s using Conjugate-Structure Algebraic-Code-Excited Linear-Prediction (CS-ACELP) with Voice Activity Decision(VAD), Discontinuous Transmission(DTX), and Comfort Noise Generatio ...
This paper examines the asymptotic (large sample) performance
of a family of non-data aided feedforward (NDA FF) nonlinear
least-squares (NLS) type carrier frequency estimators for burst-mode
phase shift keying (PSK) modulations transmitted through AWGN and
flat Ricean-fading channels. The asymptoti ...
The need for accurate monitoring and analysis of sequential data arises in many scientic, industrial
and nancial problems. Although the Kalman lter is effective in the linear-Gaussian
case, new methods of dealing with sequential data are required with non-standard models.
Recently, there has been re ...
Boosting is a meta-learning approach that aims at combining an ensemble of weak classifiers to form a strong classifier. Adaptive Boosting (Adaboost) implements this idea as a greedy search for a linear combination of classifiers by overweighting the examples that are misclassified by each classifie ...