% 奇异值分解 (sigular value decomposition,SVD) 是另一种正交矩阵分解法;SVD是最可靠的分解法,
% 但是它比QR 分解法要花上近十倍的计算时间。[U,S,V]=svd(A),其中U和V代表二个相互正交矩阵,
% 而S代表一对角矩阵。 和QR分解法相同者, 原矩阵A不必为正方矩阵。
% 使用SVD分解法的用途是解最小平方误差法和数据压 ...
/dl/243573.html
标签:
decomposition
SVD
sigular
value
上传时间:
2013-12-14
上传用户:大融融rr