function c = fwa2(x,pat,tp) % fwa2 - 2D forward wave atom transform % ----------------- % INPUT % -- % x is a real N-by-N matrix. N is a power of 2. % -- % pat specifies the type of frequency partition which satsifies % parabolic scaling relationship. pat can either be 'p' or 'q'. % -- % tp is the type of tranform. % 'ortho': orthobasis % 'directional': real-valued frame with single oscillation direction % 'complex': complex-valued frame % ----------------- % OUTPUT % -- % c is a cell array which contains the wave atom coefficients. If % tp=='ortho', then c{j}{m1,m2}(n1,n2) is the coefficient at scale j, % frequency index (m1,m2) and spatial index (n1,n2). If % tp=='directional', then c{j,d}{m1,m2}(n1,n2) with d=1,2 are the % coefficients at scale j, frequency index (m1,m2) and spatial index % (n1,n2). If tp=='complex', then c{j,d}{m1,m2)(n1,n2) with d=1,2,3,4 % are the coefficients at scale j, frequency index (m1,m2) and spatial % index (n1,n2). % ----------------- % Written by Lexing Ying and Laurent Demanet, 2007 if( ismember(tp, {'ortho','directional','complex'})==0 | ismember(pat, {'p','q','u'})==0 ) error('wrong'); end if(strcmp(tp, 'ortho')==1) %--------------------------------------------------------- N = size(x,1); H = N/2; lst = freq_pat(H,pat); %------------------ f = fft2(x) / sqrt(prod(size(x))); A = N; c = cell(length(lst),1); %------------------ for s=1:length(lst) nw = length(lst{s}); c{s} = cell(nw,nw); for I=0:nw-1 for J=0:nw-1 if(lst{s}(I+1)==0 & lst{s}(J+1)==0) c{s}{I+1,J+1} = []; else B = 2^(s-1); D = 2*B; Ict = I*B; Jct = J*B; %starting position in freq if(mod(I,2)==0) Ifm = Ict-2/3*B; Ito = Ict+4/3*B; else Ifm = Ict-1/3*B; Ito = Ict+5/3*B; end if(mod(J,2)==0) Jfm = Jct-2/3*B; Jto = Jct+4/3*B; else Jfm = Jct-1/3*B; Jto = Jct+5/3*B; end res = zeros(D,D); for id=0:1 if(id==0) Idx = [ceil(Ifm):floor(Ito)]; Icf = kf_rt(Idx/B*pi, I); else Idx = [ceil(-Ito):floor(-Ifm)]; Icf = kf_lf(Idx/B*pi, I); end for jd=0:1 if(jd==0) Jdx = [ceil(Jfm):floor(Jto)]; Jcf = kf_rt(Jdx/B*pi, J); else Jdx = [ceil(-Jto):floor(-Jfm)]; Jcf = kf_lf(Jdx/B*pi, J); end res(mod(Idx,D)+1,mod(Jdx,D)+1) = res(mod(Idx,D)+1,mod(Jdx,D)+1) + conj( Icf.'*Jcf ) .* f(mod(Idx,A)+1,mod(Jdx,A)+1); end end c{s}{I+1,J+1} = ifft2(res) * sqrt(prod(size(res))); end end end end elseif(strcmp(tp, 'directional')==1) %--------------------------------------------------------- N = size(x,1); H = N/2; lst = freq_pat(H,pat); %------------------ f = fft2(x) / sqrt(prod(size(x))); A = N; c1 = cell(length(lst),1); c2 = cell(length(lst),1); %------------------ for s=1:length(lst) nw = length(lst{s}); c1{s} = cell(nw,nw); c2{s} = cell(nw,nw); for I=0:nw-1 for J=0:nw-1 if(lst{s}(I+1)==0 & lst{s}(J+1)==0) c1{s}{I+1,J+1} = []; c2{s}{I+1,J+1} = []; else B = 2^(s-1); D = 2*B; res = zeros(D,D); Ict = I*B; Jct = J*B; %starting position in freq if(mod(I,2)==0) Ifm = Ict-2/3*B; Ito = Ict+4/3*B; else Ifm = Ict-1/3*B; Ito = Ict+5/3*B; end if(mod(J,2)==0) Jfm = Jct-2/3*B; Jto = Jct+4/3*B; else Jfm = Jct-1/3*B; Jto = Jct+5/3*B; end res = zeros(D,D); Idx = [ceil(Ifm):floor(Ito)]; Icf = kf_rt(Idx/B*pi, I); Jdx = [ceil(Jfm):floor(Jto)]; Jcf = kf_rt(Jdx/B*pi, J); res(mod(Idx,D)+1,mod(Jdx,D)+1) = res(mod(Idx,D)+1,mod(Jdx,D)+1) + conj( Icf.'*Jcf ) .* f(mod(Idx,A)+1,mod(Jdx,A)+1); Idx = [ceil(-Ito):floor(-Ifm)]; Icf = kf_lf(Idx/B*pi, I); Jdx = [ceil(-Jto):floor(-Jfm)]; Jcf = kf_lf(Jdx/B*pi, J); res(mod(Idx,D)+1,mod(Jdx,D)+1) = res(mod(Idx,D)+1,mod(Jdx,D)+1) + conj( Icf.'*Jcf ) .* f(mod(Idx,A)+1,mod(Jdx,A)+1); c1{s}{I+1,J+1} = ifft2(res) * sqrt(prod(size(res))); res = zeros(D,D); Idx = [ceil(Ifm):floor(Ito)]; Icf = kf_rt(Idx/B*pi, I); Jdx = [ceil(-Jto):floor(-Jfm)]; Jcf = kf_lf(Jdx/B*pi, J); res(mod(Idx,D)+1,mod(Jdx,D)+1) = res(mod(Idx,D)+1,mod(Jdx,D)+1) + conj( Icf.'*Jcf ) .* f(mod(Idx,A)+1,mod(Jdx,A)+1); Idx = [ceil(-Ito):floor(-Ifm)]; Icf = kf_lf(Idx/B*pi, I); Jdx = [ceil(Jfm):floor(Jto)]; Jcf = kf_rt(Jdx/B*pi, J); res(mod(Idx,D)+1,mod(Jdx,D)+1) = res(mod(Idx,D)+1,mod(Jdx,D)+1) + conj( Icf.'*Jcf ) .* f(mod(Idx,A)+1,mod(Jdx,A)+1); c2{s}{I+1,J+1} = ifft2(res) * sqrt(prod(size(res))); end end end end c = [c1 c2]; elseif(strcmp(tp, 'complex')==1) %--------------------------------------------------------- N = size(x,1); H = N/2; lst = freq_pat(H,pat); %------------------ f = fft2(x) / sqrt(prod(size(x))); A = N; c1 = cell(length(lst),1); c2 = cell(length(lst),1); c3 = cell(length(lst),1); c4 = cell(length(lst),1); %------------------ for s=1:length(lst) nw = length(lst{s}); c1{s} = cell(nw,nw); c2{s} = cell(nw,nw); c3{s} = cell(nw,nw); c4{s} = cell(nw,nw); for I=0:nw-1 for J=0:nw-1 if(lst{s}(I+1)==0 & lst{s}(J+1)==0) c1{s}{I+1,J+1} = []; c2{s}{I+1,J+1} = []; c3{s}{I+1,J+1} = []; c4{s}{I+1,J+1} = []; else B = 2^(s-1); D = 2*B; res = zeros(D,D); Ict = I*B; Jct = J*B; %starting position in freq if(mod(I,2)==0) Ifm = Ict-2/3*B; Ito = Ict+4/3*B; else Ifm = Ict-1/3*B; Ito = Ict+5/3*B; end if(mod(J,2)==0) Jfm = Jct-2/3*B; Jto = Jct+4/3*B; else Jfm = Jct-1/3*B; Jto = Jct+5/3*B; end res = zeros(D,D); Idx = [ceil(Ifm):floor(Ito)]; Icf = kf_rt(Idx/B*pi, I); Jdx = [ceil(Jfm):floor(Jto)]; Jcf = kf_rt(Jdx/B*pi, J); res(mod(Idx,D)+1,mod(Jdx,D)+1) = res(mod(Idx,D)+1,mod(Jdx,D)+1) + conj( Icf.'*Jcf ) .* f(mod(Idx,A)+1,mod(Jdx,A)+1); c1{s}{I+1,J+1} = ifft2(res) * sqrt(prod(size(res))); res = zeros(D,D); Idx = [ceil(-Ito):floor(-Ifm)]; Icf = kf_lf(Idx/B*pi, I); Jdx = [ceil(-Jto):floor(-Jfm)]; Jcf = kf_lf(Jdx/B*pi, J); res(mod(Idx,D)+1,mod(Jdx,D)+1) = res(mod(Idx,D)+1,mod(Jdx,D)+1) + conj( Icf.'*Jcf ) .* f(mod(Idx,A)+1,mod(Jdx,A)+1); c2{s}{I+1,J+1} = ifft2(res) * sqrt(prod(size(res))); res = zeros(D,D); Idx = [ceil(Ifm):floor(Ito)]; Icf = kf_rt(Idx/B*pi, I); Jdx = [ceil(-Jto):floor(-Jfm)]; Jcf = kf_lf(Jdx/B*pi, J); res(mod(Idx,D)+1,mod(Jdx,D)+1) = res(mod(Idx,D)+1,mod(Jdx,D)+1) + conj( Icf.'*Jcf ) .* f(mod(Idx,A)+1,mod(Jdx,A)+1); c3{s}{I+1,J+1} = ifft2(res) * sqrt(prod(size(res))); res = zeros(D,D); Idx = [ceil(-Ito):floor(-Ifm)]; Icf = kf_lf(Idx/B*pi, I); Jdx = [ceil(Jfm):floor(Jto)]; Jcf = kf_rt(Jdx/B*pi, J); res(mod(Idx,D)+1,mod(Jdx,D)+1) = res(mod(Idx,D)+1,mod(Jdx,D)+1) + conj( Icf.'*Jcf ) .* f(mod(Idx,A)+1,mod(Jdx,A)+1); c4{s}{I+1,J+1} = ifft2(res) * sqrt(prod(size(res))); end end end end c = [c1 c2 c3 c4]; end