聚类实现

源代码在线查看: k-means算法.txt

软件大小: 3 K
上传用户: vicegle
关键词: 聚类
下载地址: 免注册下载 普通下载 VIP

相关代码

				K-MEANS算法
				  k-means 算法接受输入量 k ;然后将n个数据对象划分为 k个聚类以便使得所获得的聚类满足:同一聚类中的对象相似度较高;而不同聚类中的对象相似度较小。聚类相似度是利用各聚类中对象的均值所获得一个“中心对象”(引力中心)来进行计算的。
				  k-means 算法的工作过程说明如下:首先从n个数据对象任意选择 k 个对象作为初始聚类中心;而对于所剩下其它对象,则根据它们与这些聚类中心的相似度(距离),分别将它们分配给与其最相似的(聚类中心所代表的)聚类;然后再计算每个所获新聚类的聚类中心(该聚类中所有对象的均值);不断重复这一过程直到标准测度函数开始收敛为止。一般都采用均方差作为标准测度函数. k个聚类具有以下特点:各聚类本身尽可能的紧凑,而各聚类之间尽可能的分开。 
				  补充一个Matlab实现方法:
				  function [cid,nr,centers] = cskmeans(x,k,nc)
				  % CSKMEANS K-Means clustering - general method.
				  % 
				  % This implements the more general k-means algorithm, where 
				  % HMEANS is used to find the initial partition and then each
				  % observation is examined for further improvements in minimizing
				  % the within-group sum of squares.
				  %
				  % [CID,NR,CENTERS] = CSKMEANS(X,K,NC) Performs K-means
				  % clustering using the data given in X. 
				  % 
				  % INPUTS: X is the n x d matrix of data,
				  % where each row indicates an observation. K indicates
				  % the number of desired clusters. NC is a k x d matrix for the
				  % initial cluster centers. If NC is not specified, then the
				  % centers will be randomly chosen from the observations.
				  %
				  % OUTPUTS: CID provides a set of n indexes indicating cluster
				  % membership for each point. NR is the number of observations
				  % in each cluster. CENTERS is a matrix, where each row
				  % corresponds to a cluster center.
				  %
				  % See also CSHMEANS
				  % W. L. and A. R. Martinez, 9/15/01
				  % Computational Statistics Toolbox 
				  warning off
				  [n,d] = size(x);
				  if nargin < 3
				  % Then pick some observations to be the cluster centers.
				  ind = ceil(n*rand(1,k));
				  % We will add some noise to make it interesting.
				  nc = x(ind,:) + randn(k,d);
				  end
				  % set up storage
				  % integer 1,...,k indicating cluster membership
				  cid = zeros(1,n); 
				  % Make this different to get the loop started.
				  oldcid = ones(1,n);
				  % The number in each cluster.
				  nr = zeros(1,k); 
				  % Set up maximum number of iterations.
				  maxiter = 100;
				  iter = 1;
				  while ~isequal(cid,oldcid) & iter < maxiter
				  % Implement the hmeans algorithm
				  % For each point, find the distance to all cluster centers
				  for i = 1:n
				  dist = sum((repmat(x(i,:),k,1)-nc).^2,2);
				  [m,ind] = min(dist); % assign it to this cluster center
				  cid(i) = ind;
				  end
				  % Find the new cluster centers
				  for i = 1:k
				  % find all points in this cluster
				  ind = find(cid==i);
				  % find the centroid
				  nc(i,:) = mean(x(ind,:));
				  % Find the number in each cluster;
				  nr(i) = length(ind);
				  end
				  iter = iter + 1;
				  end
				  % Now check each observation to see if the error can be minimized some more. 
				  % Loop through all points.
				  maxiter = 2;
				  iter = 1;
				  move = 1;
				  while iter < maxiter & move ~= 0 
				  move = 0;
				  % Loop through all points.
				  for i = 1:n
				  % find the distance to all cluster centers
				  dist = sum((repmat(x(i,:),k,1)-nc).^2,2);
				  r = cid(i); % This is the cluster id for x
				  %%nr,nr+1;
				  dadj = nr./(nr+1).*dist'; % All adjusted distances
				  [m,ind] = min(dadj); % minimum should be the cluster it belongs to
				  if ind ~= r % if not, then move x
				  cid(i) = ind;
				  ic = find(cid == ind);
				  nc(ind,:) = mean(x(ic,:));
				  move = 1;
				  end
				  end
				  iter = iter+1;
				  end
				  centers = nc;
				  if move == 0
				  disp('No points were moved after the initial clustering procedure.')
				  else
				  disp('Some points were moved after the initial clustering procedure.')
				  end
				  warning on
							

相关资源