#include "stdafx.h"
#include "MyCom.h"
CComStatus::CComStatus()
{
m_hCom = NULL;
m_bComId = (char)1;//COM1
m_bByteSize=8;
m_bStopBits=ONESTOPBIT;
m_bParity=NOPARITY;
m_dwBaudRate=9600;
m_bEvtChar=EVENTCHAR;
m_fBinary=1;
m_bConnected = FALSE;
m_bFlowCtrl = FC_XONXOFF ;
m_fXonXoff = FALSE;
}
void CComStatus::Set(BYTE bComId,BYTE bByteSize,BYTE bStopBits,BYTE bParity,
DWORD dwBaudRate,char bEvtChar,DWORD fBinary)
{
m_hCom = NULL;
m_bComId = bComId;
m_bByteSize=bByteSize;
m_bStopBits=bStopBits;
m_bParity=bParity;
m_dwBaudRate=dwBaudRate;
m_bEvtChar=bEvtChar;
m_fBinary=fBinary;
m_bConnected = FALSE;
m_bFlowCtrl = FC_XONXOFF ;
m_fXonXoff = FALSE;
}
BOOL CComStatus::OpenConnection()
{
char csCom[10];
COMMTIMEOUTS CommTimeOuts ;
if((m_bComId < 0) || (m_bComId > 4))
return FALSE;//从COM1到COM4
if(m_hCom)//if already open
return FALSE;
//OVERLAPPED包含异步I/O信息
m_rdos.Offset = 0;
m_rdos.OffsetHigh = 0;
m_rdos.hEvent = CreateEvent(NULL,TRUE,FALSE,NULL);
if(m_rdos.hEvent == NULL)
return FALSE;
m_wtos.Offset = 0;
m_wtos.OffsetHigh = 0;
m_wtos.hEvent = CreateEvent(NULL,TRUE,FALSE,NULL);
if(m_wtos.hEvent == NULL)
{
CloseHandle(m_rdos.hEvent);
return FALSE;
}
wsprintf(csCom,"COM%d",m_bComId);
m_hCom = CreateFile(csCom,GENERIC_READ | GENERIC_WRITE,
0,
NULL,
OPEN_EXISTING,
FILE_ATTRIBUTE_NORMAL | FILE_FLAG_OVERLAPPED,
NULL
);
if(m_hCom == INVALID_HANDLE_VALUE) {
//dwError = GetLastError();
// handle error
return FALSE;
}
else
{
// get any early notifications
SetCommMask( m_hCom, EV_RXCHAR ) ;
// setup device buffers
SetupComm( m_hCom, 4096, 4096 ) ;
// purge any information in the buffer
PurgeComm( m_hCom, PURGE_TXABORT | PURGE_RXABORT |
PURGE_TXCLEAR | PURGE_RXCLEAR ) ;
// set up for overlapped I/O
DWORD dwTemp = 1000 / (this->m_dwBaudRate / 8);
CommTimeOuts.ReadIntervalTimeout = 0xFFFFFFFF ;
CommTimeOuts.ReadTotalTimeoutMultiplier = 0;//((dwTemp > 0) ? dwTemp : 1);
CommTimeOuts.ReadTotalTimeoutConstant = 1000 ;
// CBR_9600 is approximately 1byte/ms. For our purposes, allow
// double the expected time per character for a fudge factor.
CommTimeOuts.WriteTotalTimeoutMultiplier = 2*CBR_9600/this->m_dwBaudRate;//( npTTYInfo ) ;
CommTimeOuts.WriteTotalTimeoutConstant = 0;//1000 ;
SetCommTimeouts( m_hCom, &CommTimeOuts ) ;
}
if(!SetupConnection())
{
CloseConnection();
return FALSE;
}
EscapeCommFunction( m_hCom, SETDTR );
m_bConnected = TRUE;
return TRUE;
}
BOOL CComStatus::CloseConnection()
{
if (NULL == m_hCom)
return ( TRUE ) ;
// set connected flag to FALSE
m_bConnected = FALSE;
// disable event notification and wait for thread
// to halt
SetCommMask( m_hCom, 0 ) ;
// block until thread has been halted
//while(THREADID(npTTYInfo) != 0);
// kill the focus
//KillTTYFocus( hWnd ) ;
// drop DTR
EscapeCommFunction( m_hCom, CLRDTR ) ;
// purge any outstanding reads/writes and close device handle
PurgeComm( m_hCom, PURGE_TXABORT | PURGE_RXABORT |
PURGE_TXCLEAR | PURGE_RXCLEAR ) ;
CloseHandle( m_hCom ) ;
m_hCom = NULL;
CloseHandle(m_rdos.hEvent);
CloseHandle(m_wtos.hEvent);
return ( TRUE ) ;
}
BOOL CComStatus::SetupConnection()
{
BOOL fRetVal ;
BYTE bSet ;
DCB dcb ;
if(m_hCom == NULL)
return FALSE;
dcb.DCBlength = sizeof( DCB ) ;
GetCommState( m_hCom, &dcb ) ;
dcb.BaudRate = this->m_dwBaudRate;
dcb.ByteSize = this->m_bByteSize;
dcb.Parity = this->m_bParity;
dcb.StopBits = this->m_bStopBits ;
dcb.EvtChar = this->m_bEvtChar ;
// setup hardware flow control
bSet = (BYTE) ((m_bFlowCtrl & FC_DTRDSR) != 0) ;
dcb.fOutxDsrFlow = bSet ;
if (bSet)
dcb.fDtrControl = DTR_CONTROL_HANDSHAKE ;
else
dcb.fDtrControl = DTR_CONTROL_ENABLE ;
bSet = (BYTE) ((m_bFlowCtrl & FC_RTSCTS) != 0) ;
dcb.fOutxCtsFlow = bSet ;
if (bSet)
dcb.fRtsControl = RTS_CONTROL_HANDSHAKE ;
else
dcb.fRtsControl = RTS_CONTROL_ENABLE ;
// setup software flow control
bSet = (BYTE) ((m_bFlowCtrl & FC_XONXOFF) != 0) ;
dcb.fInX = dcb.fOutX = bSet ;
dcb.XonChar = ASCII_XON ;
char xon = ASCII_XON ;
dcb.XoffChar = ASCII_XOFF ;
char xoff = ASCII_XOFF ;
dcb.XonLim = 100 ;
dcb.XoffLim = 100 ;
dcb.fBinary = TRUE ;
dcb.fParity = TRUE ;
fRetVal = SetCommState( m_hCom, &dcb ) ;
return ( fRetVal ) ;
}
BOOL CComStatus::IsConnected()
{
return m_bConnected;
}
// Description:
// Reads a block from the COM port and stuffs it into
// the provided buffer.
//
// Parameters:
// HWND hWnd
// handle to TTY window
//
// LPSTR lpszBlock
// block used for storage
//
// int nMaxLength
// max length of block to read
int ReadCommBlock(CComStatus& comDev,LPSTR lpszBlock, int nMaxLength )
{
BOOL fReadStat ;
COMSTAT ComStat ;
DWORD dwErrorFlags;
DWORD dwLength;
DWORD dwError;
char szError[ 10 ] ;
// only try to read number of bytes in queue
ClearCommError( comDev.m_hCom, &dwErrorFlags, &ComStat ) ;
dwLength = min( (DWORD) nMaxLength, ComStat.cbInQue ) ;
if (dwLength > 0)
{
fReadStat = ReadFile( comDev.m_hCom, lpszBlock,
dwLength, &dwLength, &(comDev.m_rdos) ) ;
if (!fReadStat)
{
if (GetLastError() == ERROR_IO_PENDING)
{
OutputDebugString("\n\rIO Pending");
// We have to wait for read to complete.
// This function will timeout according to the
// CommTimeOuts.ReadTotalTimeoutConstant variable
// Every time it times out, check for port errors
while(!GetOverlappedResult( comDev.m_hCom ,
&(comDev.m_rdos), &dwLength, TRUE ))
{
dwError = GetLastError();
if(dwError == ERROR_IO_INCOMPLETE)
// normal result if not finished
continue;
else
{
// an error occurred, try to recover
wsprintf( szError, "", dwError ) ;
ClearCommError( comDev.m_hCom , &dwErrorFlags, &ComStat ) ;
break;
}
}
}
else
{
// some other error occurred
dwLength = 0 ;
ClearCommError( comDev.m_hCom , &dwErrorFlags, &ComStat ) ;
}
}
}
return ( dwLength ) ;
}
// Writes a block of data to the COM port specified in the associated
// TTY info structure.
//
// Parameters:
// HWND hWnd
// handle to TTY window
//
// BYTE *pByte
// pointer to data to write to port
BOOL WriteCommBlock( CComStatus& comDev, LPSTR lpByte , DWORD dwBytesToWrite)
{
BOOL fWriteStat ;
DWORD dwBytesWritten ;
DWORD dwErrorFlags;
DWORD dwError;
DWORD dwBytesSent=0;
COMSTAT ComStat;
char szError[ 128 ] ;
fWriteStat = WriteFile( comDev.m_hCom , lpByte, dwBytesToWrite,
&dwBytesWritten, &( comDev.m_wtos) ) ;
// Note that normally the code will not execute the following
// because the driver caches write operations. Small I/O requests
// (up to several thousand bytes) will normally be accepted
// immediately and WriteFile will return true even though an
// overlapped operation was specified
if (!fWriteStat)
{
if(GetLastError() == ERROR_IO_PENDING)
{
// We should wait for the completion of the write operation
// so we know if it worked or not
// This is only one way to do this. It might be beneficial to
// place the write operation in a separate thread
// so that blocking on completion will not negatively
// affect the responsiveness of the UI
// If the write takes too long to complete, this
// function will timeout according to the
// CommTimeOuts.WriteTotalTimeoutMultiplier variable.
// This code logs the timeout but does not retry
// the write.
while(!GetOverlappedResult( comDev.m_hCom,
&(comDev.m_wtos), &dwBytesWritten, TRUE ))
{
dwError = GetLastError();
if(dwError == ERROR_IO_INCOMPLETE)
{
// normal result if not finished
dwBytesSent += dwBytesWritten;
continue;
}
else
{
// an error occurred, try to recover
wsprintf( szError, "", dwError ) ;
ClearCommError( comDev.m_hCom, &dwErrorFlags, &ComStat ) ;
break;
}
}
dwBytesSent += dwBytesWritten;
if( dwBytesSent != dwBytesToWrite )
wsprintf(szError,"\nProbable Write Timeout: Total of %ld bytes sent", dwBytesSent);
else
wsprintf(szError,"\n%ld bytes written", dwBytesSent);
OutputDebugString(szError);
}
else
{
// some other error occurred
ClearCommError( comDev.m_hCom, &dwErrorFlags, &ComStat ) ;
return ( FALSE );
}
}
return ( TRUE ) ;
}