威士忌的HDU题解.大概有260多题的源码。对于学习非常有好处。

源代码在线查看: 1134 game of connections.cpp

软件大小: 502 K
上传用户: bi_yangfeng
关键词: HDU 260 源码
下载地址: 免注册下载 普通下载 VIP

相关代码

				//和Problem: 1130 ( How Many Trees? ) 相同, 1134 Game of Connections , 1023 Train Problem II
				//求二叉树计数
				//C(2n,n)-C(2n,n-1)=C(2n,n) / (n+1) 
				#include  
				#include  
				#include  
				#include  
				using namespace std; 
				
				#define MAXN 9999 
				#define DLEN 4 
				
				class BigNum{ 
				private: 
				   int a[300];//DLEN digs for a position 
				   int len; 
				public: 
				   BigNum(){len = 1;memset(a,0,sizeof(a));} 
				   BigNum(const int b); 
				   BigNum(const BigNum & T); 
				
				   bool     Bigger(const BigNum &) const; 
				   BigNum & operator=(const BigNum &); 
				   BigNum & Add(const BigNum &); 
				   BigNum & Sub(const BigNum &); 
				   BigNum operator+(const BigNum &) const; 
				   BigNum operator-(const BigNum &) const; 
				   BigNum operator*(const BigNum &) const; 
				   BigNum operator/(const int   &) const; 
				   void Print(); 
				
				   BigNum operator+=(const BigNum &) ; 
				   BigNum operator-=(const BigNum &) ; 
				   BigNum operator*=(const BigNum &) ; 
				   BigNum operator/=(const int   &) ; 
				}; 
				BigNum::BigNum(const int b) 
				{ 
				   int c,d = b; 
				
				   len = 0; 
				   memset(a,0,sizeof(a)); 
				   while(d > MAXN){ 
				      c = d - d / (MAXN + 1) * (MAXN + 1); 
				      d = d / (MAXN + 1); 
				      a[len++] = c; 
				   } 
				   a[len++] = d; 
				} 
				BigNum::BigNum(const BigNum & T) : len(T.len) 
				{ 
				   int i; 
				   memset(a,0,sizeof(a)); 
				   for(i = 0 ; i < len ; i++) 
				      a[i] = T.a[i]; 
				} 
				bool  BigNum::Bigger(const BigNum & T) const 
				{ 
				   int ln; 
				   if(len > T.len) return true; 
				   else if(len == T.len){ 
				      ln = len - 1; 
				      while(a[ln] == T.a[ln] && ln >= 0) ln--; 
				      if(ln >= 0 && a[ln] > T.a[ln]) return true; 
				      else return false; 
				   } 
				   else return false; 
				} 
				BigNum & BigNum::operator=(const BigNum & n) 
				{ 
				   len = n.len; 
				   memset(a,0,sizeof(a)); 
				   for(int i = 0 ; i < len ; i++) 
				      a[i] = n.a[i]; 
				   return *this; 
				} 
				BigNum & BigNum::Add(const BigNum & T) 
				{ 
				   int i,big; 
				
				   big = T.len > len ? T.len : len; 
				   for(i = 0 ; i < big ; i++) 
				   { 
				      a[i] = a[i] + T.a[i]; 
				      if(a[i] > MAXN) 
				      { 
				         a[i + 1]++; 
				         a[i] = a[i] - MAXN - 1; 
				      } 
				   } 
				   if(a[big] != 0) len = big + 1; 
				   else len = big; 
				
				   return *this; 
				} 
				BigNum & BigNum::Sub(const BigNum & T) 
				{ 
				   int i,j,big; 
				
				   big = T.len > len ? T.len : len; 
				   for(i = 0 ; i < big ; i++){ 
				      if(a[i] < T.a[i]){ 
				         j = i + 1; 
				         while(a[j] == 0) j++; 
				         a[j--]--; 
				         while(j > i) a[j--] += MAXN; 
				         a[i] = a[i] + MAXN + 1 - T.a[i]; 
				      } 
				      else a[i] -= T.a[i]; 
				   } 
				   len = big; 
				   while(a[len - 1] == 0 && len > 1) len--; 
				   return *this; 
				} 
				BigNum BigNum::operator+(const BigNum & n) const 
				{ 
				   BigNum a = *this; 
				
				   a.Add(n); 
				   return a; 
				} 
				BigNum BigNum::operator-(const BigNum & T) const 
				{ 
				   BigNum b = *this; 
				
				   b.Sub(T); 
				   return b; 
				} 
				BigNum BigNum::operator*(const BigNum & T) const 
				{ 
				   BigNum ret; 
				   int i,j,up; 
				   int temp,temp1; 
				
				   for(i = 0 ; i < len ; i++){ 
				      up = 0; 
				      for(j = 0 ; j < T.len ; j++){ 
				         temp = a[i] * T.a[j] + ret.a[i + j] + up; 
				         if(temp > MAXN){ 
				            temp1 = temp - temp / (MAXN + 1) * (MAXN + 1); 
				            up = temp / (MAXN + 1); 
				            ret.a[i + j] = temp1; 
				         } 
				         else { 
				            up = 0; 
				            ret.a[i + j] = temp; 
				         } 
				      } 
				      if(up != 0) 
				         ret.a[i + j] = up; 
				   } 
				   ret.len = i + j; 
				   while(ret.a[ret.len - 1] == 0 && ret.len > 1) ret.len--; 
				   return ret; 
				} 
				BigNum BigNum::operator/(const int & b) const 
				{ 
				   BigNum ret; 
				   int i,down = 0; 
				
				   for(i = len - 1 ; i >= 0 ; i--){ 
				      ret.a[i] = (a[i] + down * (MAXN + 1)) / b; 
				      down = a[i] + down * (MAXN + 1) - ret.a[i] * b; 
				   } 
				   ret.len = len; 
				   while(ret.a[ret.len - 1] == 0) ret.len--; 
				   return ret; 
				} 
				void BigNum::Print() 
				{ 
				   int i; 
				
				   cout 				   for(i = len - 2 ; i >= 0 ; i--){ 
				      cout.width(DLEN); 
				      cout.fill('0'); 
				      cout 				   } 
				   cout 				} 
				
				BigNum BigNum::operator*=(const BigNum & T) 
				{ 
				   BigNum ret; 
				   int i,j,up; 
				   int temp,temp1; 
				
				   for(i = 0 ; i < len ; i++){ 
				      up = 0; 
				      for(j = 0 ; j < T.len ; j++){ 
				         temp = a[i] * T.a[j] + ret.a[i + j] + up; 
				         if(temp > MAXN){ 
				            temp1 = temp - temp / (MAXN + 1) * (MAXN + 1); 
				            up = temp / (MAXN + 1); 
				            ret.a[i + j] = temp1; 
				         } 
				         else { 
				            up = 0; 
				            ret.a[i + j] = temp; 
				         } 
				      } 
				      if(up != 0) 
				         ret.a[i + j] = up; 
				   } 
				   ret.len = i + j; 
				   while(ret.a[ret.len - 1] == 0 && ret.len > 1) ret.len--; 
				   *this=ret; 
				   return ret; 
				} 
				BigNum BigNum::operator/=(const int & b) 
				{ 
				   BigNum ret; 
				   int i,down = 0; 
				
				   for(i = len - 1 ; i >= 0 ; i--){ 
				      ret.a[i] = (a[i] + down * (MAXN + 1)) / b; 
				      down = a[i] + down * (MAXN + 1) - ret.a[i] * b; 
				   } 
				   ret.len = len; 
				   while(ret.a[ret.len - 1] == 0) ret.len--; 
				   *this=ret; 
				   return ret; 
				} 
				
				
				const int Max=100; 
				
				int main() 
				{ 
				    int t,n,ca; 
				    BigNum ans; 
				
				    while(cin>>n) 
				    { 
				    	if(n==-1)
				    		break;
				        for(ca=2*n,ans=1;ca>=n+2;ca--) 
				        { 
				            ans*=ca; 
				        } 
				        for(ca=2;ca				        { 
				            ans/=ca; 
				        } 
				         
				        ans.Print(); 
				    } 
				    return 0; 
				} 
							

相关资源