本程序是基于linux系统下c++代码

源代码在线查看: gamma.shape.glm.html

软件大小: 1560 K
上传用户: changke8311
关键词: linux 程序 代码
下载地址: 免注册下载 普通下载 VIP

相关代码

				
				R: Estimate the Shape Parameter of the Gamma Distribution in a GLM Fit
				
				
				
				
				gamma.shape {MASS}R Documentation
				Estimate the Shape Parameter of the Gamma Distribution in a GLM Fit
				
				
				Description
				
				
				Find the maximum likelihood estimate of the shape parameter of
				the gamma distribution after fitting a Gamma generalized
				linear model.
				
				
				
				Usage
				
				
				## S3 method for class 'glm':
				gamma.shape(object, it.lim = 10,
				            eps.max = .Machine$double.eps^0.25, verbose = FALSE, ...)
				
				
				
				Arguments
				
				
				object
				
				Fitted model object from a Gamma family or quasi family with
				variance = "mu^2".
				
				it.lim
				
				Upper limit on the number of iterations.
				
				eps.max
				
				Maximum discrepancy between approximations for the iteration
				process to continue.
				
				verbose
				
				If TRUE, causes successive iterations to be printed out.  The
				initial estimate is taken from the deviance.
				
				...
				
				further arguments passed to or from other methods.
				
				
				
				Details
				
				
				A glm fit for a Gamma family correctly calculates the maximum
				likelihood estimate of the mean parameters but provides only a
				crude estimate of the dispersion parameter.  This function takes
				the results of the glm fit and solves the maximum likelihood
				equation for the reciprocal of the dispersion parameter, which is
				usually called the shape (or exponent) parameter.
				
				
				
				Value
				
				
				List of two components
				
				
				alpha
				
				the maximum likelihood estimate
				
				SE
				
				the approximate standard error, the square-root of the reciprocal of
				the observed information.
				
				
				
				References
				
				
				Venables, W. N. and Ripley, B. D. (2002)
				Modern Applied Statistics with S. Fourth edition.  Springer.
				
				
				
				See Also
				
				
				gamma.dispersion
				
				
				
				Examples
				
				
				clotting <- data.frame(
				    u = c(5,10,15,20,30,40,60,80,100),
				    lot1 = c(118,58,42,35,27,25,21,19,18),
				    lot2 = c(69,35,26,21,18,16,13,12,12))
				clot1 <- glm(lot1 ~ log(u), data = clotting, family = Gamma)
				gamma.shape(clot1)
				## Not run: 
				Alpha: 538.13
				   SE: 253.60
				## End(Not run)
				gm <- glm(Days + 0.1 ~ Age*Eth*Sex*Lrn,
				          quasi(link=log, variance="mu^2"), quine,
				          start = c(3, rep(0,31)))
				gamma.shape(gm, verbose = TRUE)
				## Not run: 
				Initial estimate: 1.0603
				Iter.  1  Alpha: 1.23840774338543
				Iter.  2  Alpha: 1.27699745778205
				Iter.  3  Alpha: 1.27834332265501
				Iter.  4  Alpha: 1.27834485787226
				
				Alpha: 1.27834
				   SE: 0.13452
				## End(Not run)
				summary(gm, dispersion = gamma.dispersion(gm))  # better summary
				
				
				
				
				[Package MASS version 7.2-44 Index]
				
				
							

相关资源