This a simple genetic algorithm implementation where the evaluation function takes positive values o

源代码在线查看: simple genetic algorithm .txt

软件大小: 4 K
上传用户: dtlyzx
关键词: implementation evaluation algorithm function
下载地址: 免注册下载 普通下载 VIP

相关代码

				**************************************************************************/
				/* This is a simple genetic algorithm implementation where the */
				/* evaluation function takes positive values only and the      */
				/* fitness of an individual is the same as the value of the    */
				/* objective function                                          */
				/**************************************************************************/
				
				#include 
				#include 
				#include 
				
				/* Change any of these parameters to match your needs */
				
				#define POPSIZE 50               /* population size */
				#define MAXGENS 1000             /* max. number of generations */
				#define NVARS 3                  /* no. of problem variables */
				#define PXOVER 0.8               /* probability of crossover */
				#define PMUTATION 0.15           /* probability of mutation */
				#define TRUE 1
				#define FALSE 0
				
				int generation;                  /* current generation no. */
				int cur_best;                    /* best individual */
				FILE *galog;                     /* an output file */
				
				struct genotype /* genotype (GT), a member of the population */
				{
				  double gene[NVARS];        /* a string of variables */
				  double fitness;            /* GT's fitness */
				  double upper[NVARS];       /* GT's variables upper bound */
				  double lower[NVARS];       /* GT's variables lower bound */
				  double rfitness;           /* relative fitness */
				  double cfitness;           /* cumulative fitness */
				};
				
				struct genotype population[POPSIZE+1];    /* population */
				struct genotype newpopulation[POPSIZE+1]; /* new population; */
				                                          /* replaces the */
				                                          /* old generation */
				
				/* Declaration of procedures used by this genetic algorithm */
				
				void initialize(void);
				double randval(double, double);
				void evaluate(void);
				void keep_the_best(void);
				void elitist(void);
				void select(void);
				void crossover(void);
				void Xover(int,int);
				void swap(double *, double *);
				void mutate(void);
				void report(void);
				
				/***************************************************************/
				/* Initialization function: Initializes the values of genes    */
				/* within the variables bounds. It also initializes (to zero)  */
				/* all fitness values for each member of the population. It    */
				/* reads upper and lower bounds of each variable from the      */
				/* input file `gadata.txt'. It randomly generates values       */
				/* between these bounds for each gene of each genotype in the  */
				/* population. The format of the input file `gadata.txt' is    */
				/* var1_lower_bound var1_upper bound                           */
				/* var2_lower_bound var2_upper bound ...                       */
				/***************************************************************/
				
				void initialize(void)
				{
				FILE *infile;
				int i, j;
				double lbound, ubound;
				
				if ((infile = fopen("gadata.txt","r"))==NULL)
				      {
				      fprintf(galog,"\nCannot open input file!\n");
				      exit(1);
				      }
				
				/* initialize variables within the bounds */
				
				for (i = 0; i < NVARS; i++)
				      {
				      fscanf(infile, "%lf",&lbound);
				      fscanf(infile, "%lf",&ubound);
				
				      for (j = 0; j < POPSIZE; j++)
				           {
				           population[j].fitness = 0;
				           population[j].rfitness = 0;
				           population[j].cfitness = 0;
				           population[j].lower[i] = lbound;
				           population[j].upper[i]= ubound;
				           population[j].gene[i] = randval(population[j].lower[i],
				                                   population[j].upper[i]);
				           }
				      }
				
				fclose(infile);
				}
				
				/***********************************************************/
				/* Random value generator: Generates a value within bounds */
				/***********************************************************/
				
				double randval(double low, double high)
				{
				double val;
				val = ((double)(rand()%1000)/1000.0)*(high - low) + low;
				return(val);
				}
				
				/*************************************************************/
				/* Evaluation function: This takes a user defined function.  */
				/* Each time this is changed, the code has to be recompiled. */
				/* The current function is:  x[1]^2-x[1]*x[2]+x[3]           */
				/*************************************************************/
				
				void evaluate(void)
				{
				int mem;
				int i;
				double x[NVARS+1];
				
				for (mem = 0; mem < POPSIZE; mem++)
				      {
				      for (i = 0; i < NVARS; i++)
				            x[i+1] = population[mem].gene[i];
				      
				      population[mem].fitness = (x[1]*x[1]) - (x[1]*x[2]) + x[3];
				      }
				}
				
				/***************************************************************/
				/* Keep_the_best function: This function keeps track of the    */
				/* best member of the population. Note that the last entry in  */
				/* the array Population holds a copy of the best individual    */
				/***************************************************************/
				
				void keep_the_best()
				{
				int mem;
				int i;
				cur_best = 0; /* stores the index of the best individual */
				
				for (mem = 0; mem < POPSIZE; mem++)
				      {
				      if (population[mem].fitness > population[POPSIZE].fitness)
				            {
				            cur_best = mem;
				            population[POPSIZE].fitness = population[mem].fitness;
				            }
				      }
				/* once the best member in the population is found, copy the genes */
				for (i = 0; i < NVARS; i++)
				      population[POPSIZE].gene[i] = population[cur_best].gene[i];
				}
				
				/****************************************************************/
				/* Elitist function: The best member of the previous generation */
				/* is stored as the last in the array. If the best member of    */
				/* the current generation is worse then the best member of the  */
				/* previous generation, the latter one would replace the worst  */
				/* member of the current population                             */
				/****************************************************************/
				
				void elitist()
				{
				int i;
				double best, worst;             /* best and worst fitness values */
				int best_mem, worst_mem; /* indexes of the best and worst member */
				
				best = population[0].fitness;
				worst = population[0].fitness;
				for (i = 0; i < POPSIZE - 1; ++i)
				      {
				      if(population[i].fitness > population[i+1].fitness)
				            {      
				            if (population[i].fitness >= best)
				                  {
				                  best = population[i].fitness;
				                  best_mem = i;
				                  }
				            if (population[i+1].fitness 				                  {
				                  worst = population[i+1].fitness;
				                  worst_mem = i + 1;
				                  }
				            }
				      else
				            {
				            if (population[i].fitness 				                  {
				                  worst = population[i].fitness;
				                  worst_mem = i;
				                  }
				            if (population[i+1].fitness >= best)
				                  {
				                  best = population[i+1].fitness;
				                  best_mem = i + 1;
				                  }
				            }
				      }
				/* if best individual from the new population is better than */
				/* the best individual from the previous population, then    */
				/* copy the best from the new population; else replace the   */
				/* worst individual from the current population with the     */
				/* best one from the previous generation                     */
				
				if (best >= population[POPSIZE].fitness)
				    {
				    for (i = 0; i < NVARS; i++)
				       population[POPSIZE].gene[i] = population[best_mem].gene[i];
				    population[POPSIZE].fitness = population[best_mem].fitness;
				    }
				else
				    {
				    for (i = 0; i < NVARS; i++)
				       population[worst_mem].gene[i] = population[POPSIZE].gene[i];
				    population[worst_mem].fitness = population[POPSIZE].fitness;
				    } 
				}
				/**************************************************************/
				/* Selection function: Standard proportional selection for    */
				/* maximization problems incorporating elitist model - makes  */
				/* sure that the best member survives                         */
				/**************************************************************/
				
				void select(void)
				{
				int mem, i, j, k;
				double sum = 0;
				double p;
				
				/* find total fitness of the population */
				for (mem = 0; mem < POPSIZE; mem++)
				      {
				      sum += population[mem].fitness;
				      }
				
				/* calculate relative fitness */
				for (mem = 0; mem < POPSIZE; mem++)
				      {
				      population[mem].rfitness =  population[mem].fitness/sum;
				      }
				population[0].cfitness = population[0].rfitness;
				
				/* calculate cumulative fitness */
				for (mem = 1; mem < POPSIZE; mem++)
				      {
				      population[mem].cfitness =  population[mem-1].cfitness +       
				                          population[mem].rfitness;
				      }
				
				/* finally select survivors using cumulative fitness. */
				
				for (i = 0; i < POPSIZE; i++)
				      { 
				      p = rand()%1000/1000.0;
				      if (p < population[0].cfitness)
				            newpopulation[i] = population[0];      
				      else
				            {
				            for (j = 0; j < POPSIZE;j++)      
				                  if (p >= population[j].cfitness && 
				                              p				                        newpopulation[i] = population[j+1];
				            }
				      }
				/* once a new population is created, copy it back */
				
				for (i = 0; i < POPSIZE; i++)
				      population[i] = newpopulation[i];      
				}
				
				/***************************************************************/
				/* Crossover selection: selects two parents that take part in  */
				/* the crossover. Implements a single point crossover          */
				/***************************************************************/
				
				void crossover(void)
				{
				int i, mem, one;
				int first  =  0; /* count of the number of members chosen */
				double x;
				
				for (mem = 0; mem < POPSIZE; ++mem)
				      {
				      x = rand()%1000/1000.0;
				      if (x < PXOVER)
				            {
				            ++first;
				            if (first % 2 == 0)
				                  Xover(one, mem);
				            else
				                  one = mem;
				            }
				      }
				}
				/**************************************************************/
				/* Crossover: performs crossover of the two selected parents. */
				/**************************************************************/
				
				void Xover(int one, int two)
				{
				int i;
				int point; /* crossover point */
				
				/* select crossover point */
				if(NVARS > 1)
				   {
				   if(NVARS == 2)
				         point = 1;
				   else
				         point = (rand() % (NVARS - 1)) + 1;
				
				   for (i = 0; i < point; i++)
				        swap(&population[one].gene[i], &population[two].gene[i]);
				
				   }
				}
				
				/*************************************************************/
				/* Swap: A swap procedure that helps in swapping 2 variables */
				/*************************************************************/
				
				void swap(double *x, double *y)
				{
				double temp;
				
				temp = *x;
				*x = *y;
				*y = temp;
				
				}
				
				/**************************************************************/
				/* Mutation: Random uniform mutation. A variable selected for */
				/* mutation is replaced by a random value between lower and   */
				/* upper bounds of this variable                              */
				/**************************************************************/
				
				void mutate(void)
				{
				int i, j;
				double lbound, hbound;
				double x;
				
				for (i = 0; i < POPSIZE; i++)
				      for (j = 0; j < NVARS; j++)
				            {
				            x = rand()%1000/1000.0;
				            if (x < PMUTATION)
				                  {
				                  /* find the bounds on the variable to be mutated */
				                  lbound = population[i].lower[j];
				                  hbound = population[i].upper[j];  
				                  population[i].gene[j] = randval(lbound, hbound);
				                  }
				            }
				}
				
				/***************************************************************/
				/* Report function: Reports progress of the simulation. Data   */
				/* dumped into the  output file are separated by commas        */
				/***************************************************************/
				
				void report(void)
				{
				int i;
				double best_val;            /* best population fitness */
				double avg;                 /* avg population fitness */
				double stddev;              /* std. deviation of population fitness */
				double sum_square;          /* sum of square for std. calc */
				double square_sum;          /* square of sum for std. calc */
				double sum;                 /* total population fitness */
				
				sum = 0.0;
				sum_square = 0.0;
				
				for (i = 0; i < POPSIZE; i++)
				      {
				      sum += population[i].fitness;
				      sum_square += population[i].fitness * population[i].fitness;
				      }
				
				avg = sum/(double)POPSIZE;
				square_sum = avg * avg * POPSIZE;
				stddev = sqrt((sum_square - square_sum)/(POPSIZE - 1));
				best_val = population[POPSIZE].fitness;
				
				fprintf(galog, "\n%5d,      %6.3f, %6.3f, %6.3f \n\n", generation, 
				                                      best_val, avg, stddev);
				}
				
				/**************************************************************/
				/* Main function: Each generation involves selecting the best */
				/* members, performing crossover & mutation and then          */
				/* evaluating the resulting population, until the terminating */
				/* condition is satisfied                                     */
				/**************************************************************/
				
				void main(void)
				{
				int i;
				
				if ((galog = fopen("galog.txt","w"))==NULL)
				      {
				      exit(1);
				      }
				generation = 0;
				
				fprintf(galog, "\n generation  best  average  standard \n");
				fprintf(galog, " number      value fitness  deviation \n");
				
				initialize();
				evaluate();
				keep_the_best();
				while(generation				      {
				      generation++;
				      select();
				      crossover();
				      mutate();
				      report();
				      evaluate();
				      elitist();
				      }
				fprintf(galog,"\n\n Simulation completed\n");
				fprintf(galog,"\n Best member: \n");
				
				for (i = 0; i < NVARS; i++)
				   {
				   fprintf (galog,"\n var(%d) = %3.3f",i,population[POPSIZE].gene[i]);
				   }
				fprintf(galog,"\n\n Best fitness = %3.3f",population[POPSIZE].fitness);
				fclose(galog);
				printf("Success\n");
				}
				/***************************************************************/
				
							

相关资源