用matlab实现贝叶斯网络的学习、推理。

源代码在线查看: learn_motif_hhmm.m

软件大小: 1976 K
上传用户: lemon_zc1949
关键词: matlab 贝叶斯 网络
下载地址: 免注册下载 普通下载 VIP

相关代码

				
				seed = 0;
				rand('state', seed);
				randn('state', seed);
				
				chars = ['a', 'c', 'g', 't'];
				motif = 'accca';
				motif_length = length(motif);
				motif_code = zeros(1, motif_length);
				for i=1:motif_length
				  motif_code(i) = find(chars == motif(i));
				end
				
				[bnet_init, Qnodes, Fnodes, Onode] = mk_motif_hhmm('motif_length', length(motif));
				%[bnet_init, Qnodes, Fnodes, Onode] = mk_motif_hhmm('motif_pattern', motif);
				ss = bnet_init.nnodes_per_slice;
				
				
				
				% We generate a training set by creating uniform sequences,
				% and inserting a single motif at a random location.
				ntrain = 100;
				T = 20;
				cases = cell(1, ntrain);
				
				if 1
				  % uniform background 
				  background_dist = normalise(ones(1, length(chars)));
				end
				if 0
				  % use a constant background
				  background_dist = zeros(1, length(chars));
				  m = find(chars=='t');
				  background_dist(m) = 1.0;
				end
				if 0
				  % use a background skewed away from the motif
				  p = 0.01; q = (1-(2*p))/2;
				  background_dist = [p p q q];
				end
				
				unif_pos = normalise(ones(1, T-length(motif)));
				cases = cell(1, ntrain);
				data = zeros(1,T);
				for i=1:ntrain
				  data = sample_discrete(background_dist, 1, T);
				  L = sample_discrete(unif_pos, 1, 1);
				  data(L:L+length(motif)-1) = motif_code;
				  cases{i} = cell(ss, T);
				  cases{i}(Onode,:) = num2cell(data);
				end
				disp('sample training cases')
				for i=1:5
				  chars(cell2num(cases{i}(Onode,:)))
				end
				
				engine_init = hmm_inf_engine(bnet_init);
				
				[bnet_learned, LL, engine_learned] = ...
				    learn_params_dbn_em(engine_init, cases, 'max_iter', 100, 'thresh', 1e-2);
				%			'anneal', 1, 'anneal_rate', 0.7);
				
				% extract the learned motif profile
				eclass = bnet_learned.equiv_class;
				CPDO=struct(bnet_learned.CPD{eclass(Onode,1)});
				fprintf('columns = chars, rows = states\n');
				profile_learned = squeeze(CPDO.CPT(2,:,:))
				[m,ndx] = max(profile_learned, [], 2);
				map_motif_learned = chars(ndx)
				back_learned = squeeze(CPDO.CPT(1,1,:))'
				%map_back_learned = chars(argmax(back_learned))
				
				CPDO_init = struct(bnet_init.CPD{eclass(Onode,1)});
				profile_init = squeeze(CPDO_init.CPT(2,:,:));
				back_init = squeeze(CPDO_init.CPT(1,1,:))';
							

相关资源