这是一款很好用的工具包
源代码在线查看: compute-best-sentence-mix.gawk
#!/usr/local/bin/gawk -f # # compute-best-sentence-mix -- # Compute the best sentence-level mixture weight for interpolating N # LMs. # # usage: compute-best-sentence-mix [lambda="l1 l2 ..."] [precision=p] pplout1 pplout2 ... #j # where pplout1, pplout2, ... is the output of ngram -debug 1 -ppl for the # models. li are initial guesses at the mixture weights, and p is the # precision with which the best lambda vector is to be found. # # $Header: /home/srilm/devel/utils/src/RCS/compute-best-sentence-mix.gawk,v 1.2 2004/11/02 02:00:35 stolcke Exp $ # BEGIN { verbose = 0; lambda = "0.5"; precision = 0.001; M_LN10 = 2.30258509299404568402; # from logINF = -320; } function abs(x) { return (x < 0) ? -x : x; } function log10(x) { return log(x) / M_LN10; } function exp10(x) { if (x < logINF) { return 0; } else { return exp(x * M_LN10); } } function addlogs(x,y) { if (x temp = x; x = y; y = temp; } return x + log10(1 + exp10(y - x)); } function print_vector(x, n) { result = "(" x[1]; for (k = 2; k result = result " " x[k]; } return result ")" } FNR == 1 { nfiles ++; num_words = 0; num_sentences = 0; } # 1 sentences, 6 words, 0 OOVs /^1 sentences, [0-9]* words, [0-9]* OOVs/ { # exclude OOVs num_words += $3 - $5; expect_logprob = 1; } # 0 zeroprobs, logprob= -22.9257 ppl= 1884.06 ppl1= 6621.32 /^[0-9]* zeroprobs, logprob= / && expect_logprob { # exclude zero prob words num_words -= $1; num_sentences += 1; if ($4 ~ /\[ -[Ii]nf/) { prob = logINF; } else { prob = $4; } sample_no = ++ nsamples[nfiles]; samples[nfiles " " sample_no] = prob; expect_logprob = 0; } END { for (i = 2; i if (nsamples[i] != nsamples[1]) { printf "mismatch in number of samples (%d != %d)", \ nsamples[1], nsamples[i] >> "/dev/stderr"; exit(1); } } last_prior = 0.0; # initialize priors from lambdas nlambdas = split(lambda, lambdas); lambda_sum = 0.0; for (i = 1; i priors[i] = lambdas[i]; lambda_sum += lambdas[i]; } # fill in the missing lambdas for (i = nlambdas + 1; i priors[i] = (1 - lambda_sum)/(nfiles - nlambdas); } iter = 0; have_converged = 0; while (!have_converged) { iter ++; delete post_totals; log_like = 0; for (j = 1; j all_inf = 1; for (i = 1; i sample = samples[i " " j]; logpost[i] = log10(priors[i]) + sample; all_inf = all_inf && (sample == logINF); if (i == 1) { logsum = logpost[i]; } else { logsum = addlogs(logsum, logpost[i]); } } # skip OOV words if (all_inf) { continue; } log_like += logsum; for (i = 1; i post_totals[i] += exp10(logpost[i] - logsum); } } printf "iteration %d, lambda = %s, ppl = %g\n", \ iter, print_vector(priors, nfiles), \ exp10(-log_like/(num_words + num_sentences)) \ >> "/dev/stderr"; fflush(); have_converged = 1; for (i = 1; i last_prior = priors[i]; priors[i] = post_totals[i]/num_sentences; if (abs(last_prior - priors[i]) > precision) { have_converged = 0; } } } printf "%d sentences, %d non-oov words, best lambda %s\n", num_sentences, num_words, print_vector(priors, nfiles); }