遗传算法matlab代码
function youhuafun
D=code;
N=50; % Tunable
maxgen=50; % Tunable
crossrate=0.5; %Tunable
muterate=0.08; %Tunable
generation=1;
num = length(D);
fatherrand=randint(num,N,3);
score = zeros(maxgen,N);
while generation ind=randperm(N-2)+2; % 随机配对交叉
A=fatherrand(:,ind(1:(N-2)/2));
B=fatherrand(:,ind((N-2)/2+1:end));
% 多点交叉
rnd=rand(num,(N-2)/2);
ind=rnd tmp=A(ind);
A(ind)=B(ind);
B(ind)=tmp;
% % 两点交叉
% for kk=1:(N-2)/2
% rndtmp=randint(1,1,num)+1;
% tmp=A(1:rndtmp,kk);
% A(1:rndtmp,kk)=B(1:rndtmp,kk);
% B(1:rndtmp,kk)=tmp;
% end
fatherrand=[fatherrand(:,1:2),A,B];
% 变异
rnd=rand(num,N);
ind=rnd [m,n]=size(ind);
tmp=randint(m,n,2)+1;
tmp(:,1:2)=0;
fatherrand=tmp+fatherrand;
fatherrand=mod(fatherrand,3);
% fatherrand(ind)=tmp;
%评价、选择
scoreN=scorefun(fatherrand,D);% 求得N个个体的评价函数
score(generation,:)=scoreN;
[scoreSort,scoreind]=sort(scoreN);
sumscore=cumsum(scoreSort);
sumscore=sumscore./sumscore(end);
childind(1:2)=scoreind(end-1:end);
for k=3:N
tmprnd=rand;
tmpind=tmprnd difind=[0,diff(tmpind)];
if ~any(difind)
difind(1)=1;
end
childind(k)=scoreind(logical(difind));
end
fatherrand=fatherrand(:,childind);
generation=generation+1;
end
% score
maxV=max(score,[],2);
minV=11*300-maxV;
plot(minV,'*');title('各代的目标函数值');
F4=D(:,4);
FF4=F4-fatherrand(:,1);
FF4=max(FF4,1);
D(:,5)=FF4;
save DData D
function D=code
load youhua.mat
% properties F2 and F3
F1=A(:,1);
F2=A(:,2);
F3=A(:,3);
if (max(F2)>1450)||(min(F2) error('DATA property F2 exceed it''s range (900,1450]')
end
% get group property F1 of data, according to F2 value
F4=zeros(size(F1));
for ite=11:-1:1
index=find(F2 F4(index)=ite;
end
D=[F1,F2,F3,F4];
function ScoreN=scorefun(fatherrand,D)
F3=D(:,3);
F4=D(:,4);
N=size(fatherrand,2);
FF4=F4*ones(1,N);
FF4rnd=FF4-fatherrand;
FF4rnd=max(FF4rnd,1);
ScoreN=ones(1,N)*300*11;
% 这里有待优化
for k=1:N
FF4k=FF4rnd(:,k);
for ite=1:11
F0index=find(FF4k==ite);
if ~isempty(F0index)
tmpMat=F3(F0index);
tmpSco=sum(tmpMat);
ScoreBin(ite)=mod(tmpSco,300);
end
end
Scorek(k)=sum(ScoreBin);
end
ScoreN=ScoreN-Scorek;