三维有限时间差分法计算矩形谐振的例子编程

源代码在线查看: 3-d fdtd code.txt

软件大小: 3 K
上传用户: csytml
关键词: 时间差 计算 矩形
下载地址: 免注册下载 普通下载 VIP

相关代码

				***********************************************************************
				     3-D FDTD code with PEC boundaries
				***********************************************************************
				
				
				     Date of this version:  February 2000
				
				     This MATLAB M-file implements the finite-difference time-domain
				     solution of Maxwell's curl equations over a three-dimensional
				     Cartesian space lattice comprised of uniform cubic grid cells.
				
				     To illustrate the algorithm, an air-filled rectangular cavity
				    resonator is modeled.  The length, width, and height of the
				    cavity are 10.0 cm (x-direction), 4.8 cm (y-direction), and
				    2.0 cm (z-direction), respectively.
				
				     The computational domain is truncated using PEC boundary
				     conditions:
				          ex(i,j,k)=0 on the j=1, j=jb, k=1, and k=kb planes
				          ey(i,j,k)=0 on the i=1, i=ib, k=1, and k=kb planes
				          ez(i,j,k)=0 on the i=1, i=ib, j=1, and j=jb planes
				    These PEC boundaries form the outer lossless walls of the cavity.
				
				     The cavity is excited by an additive current source oriented
				     along the z-direction.  The source waveform is a differentiated
				     Gaussian pulse given by
				          J(t)=-J0*(t-t0)*exp(-(t-t0)^2/tau^2),
				     where tau=50 ps.  The FWHM spectral bandwidth of this zero-dc-
				     content pulse is approximately 7 GHz. The grid resolution
				    (dx = 2 mm) was chosen to provide at least 10 samples per
				     wavelength up through 15 GHz.
				
				     To execute this M-file, type "fdtd3D" at the MATLAB prompt.
				     This M-file displays the FDTD-computed Ez fields at every other
				     time step, and records those frames in a movie matrix, M, which
				     is played at the end of the simulation using the "movie" command.
				
				***********************************************************************
				
				clear
				
				***********************************************************************
				    Fundamental constants
				***********************************************************************
				
				cc=2.99792458e8;            %speed of light in free space
				muz=4.0*pi*1.0e-7;          %permeability of free space
				epsz=1.0/(cc*cc*muz);       %permittivity of free space
				
				***********************************************************************
				     Grid parameters
				***********************************************************************
				
				ie=50;       %number of grid cells in x-direction
				je=24;       %number of grid cells in y-direction
				ke=10;       %number of grid cells in z-direction
				
				ib=ie+1;
				jb=je+1;
				kb=ke+1;
				
				is=26;       %location of z-directed current source
				js=13;       %location of z-directed current source
				
				kobs=5;
				
				dx=0.002;          %space increment of cubic lattice
				dt=dx/(2.0*cc);    %time step
				
				nmax=500;          %total number of time steps
				
				***********************************************************************
				     Differentiated Gaussian pulse excitation
				***********************************************************************
				
				rtau=50.0e-12;
				tau=rtau/dt;
				ndelay=3*tau;
				srcconst=-dt*3.0e+11;
				
				***********************************************************************
				    Material parameters
				***********************************************************************
				
				eps=1.0;
				sig=0.0;
				
				***********************************************************************
				     Updating coefficients
				***********************************************************************
				
				ca=(1.0-(dt*sig)/(2.0*epsz*eps))/(1.0+(dt*sig)/(2.0*epsz*eps));
				cb=(dt/epsz/eps/dx)/(1.0+(dt*sig)/(2.0*epsz*eps));
				da=1.0;
				db=dt/muz/dx;
				
				***********************************************************************
				     Field arrays
				***********************************************************************
				
				ex=zeros(ie,jb,kb);
				ey=zeros(ib,je,kb);
				ez=zeros(ib,jb,ke);
				hx=zeros(ib,je,ke);
				hy=zeros(ie,jb,ke);
				hz=zeros(ie,je,kb);
				
				**********************************************************************
				     Movie initialization
				***********************************************************************
				
				tview(:,:)=ez(:,:,kobs);
				sview(:,:)=ez(:,js,:);
				
				subplot('position',[0.15 0.45 0.7 0.45]),pcolor(tview');
				shading flat;
				caxis([-1.0 1.0]);
				colorbar;
				axis image;
				title(['Ez(i,j,k=5), time step = 0']);
				xlabel('i coordinate');
				ylabel('j coordinate');
				
				subplot('position',[0.15 0.10 0.7 0.25]),pcolor(sview');
				shading flat;
				caxis([-1.0 1.0]);
				colorbar;
				axis image;
				title(['Ez(i,j=13,k), time step = 0']);
				xlabel('i coordinate');
				ylabel('k coordinate');
				
				rect=get(gcf,'Position');
				rect(1:2)=[0 0];
				
				M=moviein(nmax/2,gcf,rect);
				
				***********************************************************************
				     BEGIN TIME-STEPPING LOOP
				***********************************************************************
				
				for n=1:nmax
				
				***********************************************************************
				     Update electric fields
				***********************************************************************
				
				ex(1:ie,2:je,2:ke)=ca*ex(1:ie,2:je,2:ke)+...
				                   cb*(hz(1:ie,2:je,2:ke)-hz(1:ie,1:je-1,2:ke)+...
				                       hy(1:ie,2:je,1:ke-1)-hy(1:ie,2:je,2:ke));
				
				ey(2:ie,1:je,2:ke)=ca*ey(2:ie,1:je,2:ke)+...
				                   cb*(hx(2:ie,1:je,2:ke)-hx(2:ie,1:je,1:ke-1)+...
				                       hz(1:ie-1,1:je,2:ke)-hz(2:ie,1:je,2:ke));
				
				ez(2:ie,2:je,1:ke)=ca*ez(2:ie,2:je,1:ke)+...
				                   cb*(hx(2:ie,1:je-1,1:ke)-hx(2:ie,2:je,1:ke)+...
				                       hy(2:ie,2:je,1:ke)-hy(1:ie-1,2:je,1:ke));
				
				ez(is,js,1:ke)=ez(is,js,1:ke)+...
				               srcconst*(n-ndelay)*exp(-((n-ndelay)^2/tau^2));
				
				**********************************************************************
				     Update magnetic fields
				**********************************************************************
				
				hx(2:ie,1:je,1:ke)=hx(2:ie,1:je,1:ke)+...
				                   db*(ey(2:ie,1:je,2:kb)-ey(2:ie,1:je,1:ke)+...
				                       ez(2:ie,1:je,1:ke)-ez(2:ie,2:jb,1:ke));
				
				hy(1:ie,2:je,1:ke)=hy(1:ie,2:je,1:ke)+...
				                   db*(ex(1:ie,2:je,1:ke)-ex(1:ie,2:je,2:kb)+...
				                       ez(2:ib,2:je,1:ke)-ez(1:ie,2:je,1:ke));
				
				hz(1:ie,1:je,2:ke)=hz(1:ie,1:je,2:ke)+...
				                   db*(ex(1:ie,2:jb,2:ke)-ex(1:ie,1:je,2:ke)+...
				                       ey(1:ie,1:je,2:ke)-ey(2:ib,1:je,2:ke));
				
				***********************************************************************
				     Visualize fields
				***********************************************************************
				
				if mod(n,2)==0;
				
				timestep=int2str(n);
				tview(:,:)=ez(:,:,kobs);
				sview(:,:)=ez(:,js,:);
				
				subplot('position',[0.15 0.45 0.7 0.45]),pcolor(tview');
				shading flat;
				caxis([-1.0 1.0]);
				colorbar;
				axis image;
				title(['Ez(i,j,k=5), time step = ',timestep]);
				xlabel('i coordinate');
				ylabel('j coordinate');
				
				subplot('position',[0.15 0.10 0.7 0.25]),pcolor(sview');
				shading flat;
				caxis([-1.0 1.0]);
				colorbar;
				axis image;
				title(['Ez(i,j=13,k), time step = ',timestep]);
				xlabel('i coordinate');
				ylabel('k coordinate');
				
				nn=n/2;
				M(:,nn)=getframe(gcf,rect);
				
				end;
				
				***********************************************************************
				     END TIME-STEPPING LOOP
				***********************************************************************
				
				end
				
				movie(gcf,M,0,10,rect);
				
							

相关资源