function varargout = tsp_ga(varargin)
%TSP_GA Finds a (near) optimal solution to the Traveling Salesman Problem (TSP)
% by setting up a Genetic Algorithm (GA) to search for the shortest
% path (least distance needed to travel to each city exactly once)
%
% TSP_GA(NUM_CITIES) where NUM_CITIES is an integer representing the number
% of cities there are (default = 50)
%
% For example TSP_GA(25) solves the TSP for 25 random cities
%
% TSP_GA(CITIES) where CITIES is an Nx2 matrix representing the X/Y
% coordinates of user specified cities
%
% For example TSP_GA(10*RAND(30,2)) solves the TSP for the 30 random
% cities in the (10*RAND(30,2)) matrix
%
% TSP_GA(..., OPTIONS) or TSP_GA(OPTIONS) where OPTIONS include one or
% more of the following in any order:
% '-NOPLOT' turns off the plot showing the progress of the GA
% '-RESULTS' turns on the plot showing the final results
% as well as the following parameter pairs:
% 'POPSIZE', VAL sets the number of citizens in the GA population
% VAL should be a positive integer (divisible by 4)
% -- default = 100
% 'MRATE', VAL sets the mutation rate for the GA
% VAL should be a float between 0 and 1, inclusive
% -- default = 0.85
% 'NUMITER', VAL sets the number of iterations (generations) for the GA
% VAL should be a positive integer
% -- default = 500
%
% Example:
% % Solves the TSP for 20 random cities using a population size of 60,
% % a 75% mutation rate, and 250 GA iterations
% tsp_ga(20, 'popsize', 60, 'mrate', 0.75, 'numiter', 250);
%
% Example:
% % Solves the TSP for 30 random cities without the progress plot
% [sorted_cities, best_route, distance] = tsp_ga(30, '-noplot');
%
% Example:
% % Solves the TSP for 40 random cities using 1000 GA iterations and
% % plots the results
% cities = 10*rand(40, 2);
% [sorted_cities] = tsp_ga(cities, 'numiter', 1000, '-results');
%
% NOTE: It is possible for TSP_GA to continue where it left off on a
% previous set of cities by using the sorted city output matrix as an
% input, as in the following example:
% cities = 10*rand(60, 2);
% sorted_cities = tsp_ga(cities, 'numiter', 100);
% figure; plot(sorted_cities(:,1), sorted_cities(:,2), '.-')
% sorted_cities2 = tsp_ga(sorted_cities);
% figure; plot(sorted_cities2(:,1), sorted_cities2(:,2), '.-')
% AUTHOR: Joseph Kirk (c) 1/2007
% EMAIL: jdkirk630 at gmail dot com
error(nargchk(0, 9, nargin));
num_cities = 50; cities = 10*rand(num_cities, 2);
pop_size = 100; num_iter = 500; mutate_rate = 0.85;
show_progress = 1; show_results = 0;
% Process Inputs
cities_flag = 0; option_flag = 0;
for var = varargin
if option_flag
if ~isfloat(var{1}), error(['Invalid value for option ' upper(option)]); end
switch option
case 'popsize', pop_size = 4*ceil(real(var{1}(1))/4); option_flag = 0;
case 'mrate', mutate_rate = min(abs(real(var{1}(1))), 1); option_flag = 0;
case 'numiter', num_iter = round(real(var{1}(1))); option_flag = 0;
otherwise, error(['Invalid option ' upper(option)])
end
elseif ischar(var{1})
switch lower(var{1})
case '-noplot', show_progress = 0;
case '-results', show_results = 1;
otherwise, option = lower(var{1}); option_flag = 1;
end
elseif isfloat(var{1})
if cities_flag, error('CITIES or NUM_CITIES may be specified, but not both'); end
if length(var{1}) == 1
num_cities = round(real(var{1}));
if num_cities < 2, error('NUM_CITIES must be an integer greater than 1'); end
cities = 10*rand(num_cities, 2); cities_flag = 1;
else
cities = real(var{1});
[num_cities, nc] = size(cities); cities_flag = 1;
if or(num_cities < 2, nc ~= 2)
error('CITIES must be an Nx2 matrix of floats, with N > 1')
end
end
else
error('Invalid input argument.')
end
end
% Construct the Distance Matrix
dist_matx = zeros(num_cities);
for ii = 2:num_cities
for jj = 1:ii-1
dist_matx(ii, jj) = sqrt(sum((cities(ii, :)-cities(jj, :)).^2));
dist_matx(jj, ii) = dist_matx(ii, jj);
end
end
% Plot Cities and Distance Matrix in a Figure
if show_progress
figure(1)
subplot(2, 2, 1)
plot(cities(:,1), cities(:,2), 'b.')
if num_cities < 75
for c = 1:num_cities
text(cities(c, 1), cities(c, 2), [' ' num2str(c)], 'Color', 'k', 'FontWeight', 'b')
end
end
title([num2str(num_cities) ' Cities'])
subplot(2, 2, 2)
imagesc(dist_matx)
title('Distance Matrix')
colormap(flipud(gray))
end
% Initialize Population
pop = zeros(pop_size, num_cities);
pop(1, :) = (1:num_cities);
for k = 2:pop_size
pop(k, :) = randperm(num_cities);
end
if num_cities < 25, display_rate = 1; else display_rate = 10; end
fitness = zeros(1, pop_size);
best_fitness = zeros(1, num_iter);
for iter = 1:num_iter
for p = 1:pop_size
d = dist_matx(pop(p, 1), pop(p, num_cities));
for city = 2:num_cities
d = d + dist_matx(pop(p, city-1), pop(p, city));
end
fitness(p) = d;
end
[best_fitness(iter) index] = min(fitness);
best_route = pop(index, :);
% Plots
if and(show_progress, ~mod(iter, display_rate))
figure(1)
subplot(2, 2, 3)
route = cities([best_route best_route(1)], :);
plot(route(:, 1), route(:, 2)', 'b.-')
title(['Best GA Route (dist = ' num2str(best_fitness(iter)) ')'])
subplot(2, 2, 4)
plot(best_fitness(1:iter), 'r', 'LineWidth', 2)
axis([1 max(2, iter) 0 max(best_fitness)*1.1])
end
% Genetic Algorithm Search
pop = iteretic_algorithm(pop, fitness, mutate_rate);
end
if show_progress
figure(1)
subplot(2, 2, 3)
route = cities([best_route best_route(1)], :);
plot(route(:, 1), route(:, 2)', 'b.-')
title(['Best GA Route (dist = ' num2str(best_fitness(iter)) ')'])
subplot(2, 2, 4)
plot(best_fitness(1:iter), 'r', 'LineWidth', 2)
title('Best Fitness')
xlabel('Generation')
ylabel('Distance')
axis([1 max(2, iter) 0 max(best_fitness)*1.1])
end
if show_results
figure(2)
imagesc(dist_matx)
title('Distance Matrix')
colormap(flipud(gray))
figure(3)
plot(best_fitness(1:iter), 'r', 'LineWidth', 2)
title('Best Fitness')
xlabel('Generation')
ylabel('Distance')
axis([1 max(2, iter) 0 max(best_fitness)*1.1])
figure(4)
route = cities([best_route best_route(1)], :);
plot(route(:, 1), route(:, 2)', 'b.-')
for c = 1:num_cities
text(cities(c, 1), cities(c, 2), [' ' num2str(c)], 'Color', 'k', 'FontWeight', 'b')
end
title(['Best GA Route (dist = ' num2str(best_fitness(iter)) ')'])
end
[not_used indx] = min(best_route);
best_ga_route = [best_route(indx:num_cities) best_route(1:indx-1)];
if best_ga_route(2) > best_ga_route(num_cities)
best_ga_route(2:num_cities) = fliplr(best_ga_route(2:num_cities));
end
varargout{1} = cities(best_ga_route, :);
varargout{2} = best_ga_route;
varargout{3} = best_fitness(iter);
%--------------------------------------
% GENETIC ALGORITHM FUNCTION
%--------------------------------------
function new_pop = iteretic_algorithm(pop, fitness, mutate_rate)
[p, n] = size(pop);
% Tournament Selection - Round One
new_pop = zeros(p, n);
ts_r1 = randperm(p);
winners_r1 = zeros(p/2, n);
tmp_fitness = zeros(1, p/2);
for i = 2:2:p
if fitness(ts_r1(i-1)) > fitness(ts_r1(i))
winners_r1(i/2, :) = pop(ts_r1(i), :);
tmp_fitness(i/2) = fitness(ts_r1(i));
else
winners_r1(i/2, :) = pop(ts_r1(i-1), :);
tmp_fitness(i/2) = fitness(ts_r1(i-1));
end
end
% Tournament Selection - Round Two
ts_r2 = randperm(p/2);
winners = zeros(p/4, n);
for i = 2:2:p/2
if tmp_fitness(ts_r2(i-1)) > tmp_fitness(ts_r2(i))
winners(i/2, :) = winners_r1(ts_r2(i), :);
else
winners(i/2, :) = winners_r1(ts_r2(i-1), :);
end
end
new_pop(1:p/4, :) = winners;
new_pop(p/2+1:3*p/4, :) = winners;
% Crossover
crossover = randperm(p/2);
children = zeros(p/4, n);
for i = 2:2:p/2
parent1 = winners_r1(crossover(i-1), :);
parent2 = winners_r1(crossover(i), :);
child = parent2;
ndx = ceil(n*sort(rand(1, 2)));
while ndx(1) == ndx(2)
ndx = ceil(n*sort(rand(1, 2)));
end
tmp = parent1(ndx(1):ndx(2));
for j = 1:length(tmp)
child(find(child == tmp(j))) = 0;
end
child = [child(1:ndx(1)) tmp child(ndx(1)+1:n)];
child = nonzeros(child)';
children(i/2, :) = child;
end
new_pop(p/4+1:p/2, :) = children;
new_pop(3*p/4+1:p, :) = children;
% Mutate
mutate = randperm(p/2);
num_mutate = round(mutate_rate*p/2);
for i = 1:num_mutate
ndx = ceil(n*sort(rand(1, 2)));
while ndx(1) == ndx(2)
ndx = ceil(n*sort(rand(1, 2)));
end
new_pop(p/2+mutate(i), ndx(1):ndx(2)) = ...
fliplr(new_pop(p/2+mutate(i), ndx(1):ndx(2)));
end