Numerical Anaysis 8th Edition by Burden and Faires

源代码在线查看: alg055.m

软件大小: 236 K
上传用户: NJ_WK
关键词: Numerical Anaysis Edition Burden
下载地址: 免注册下载 普通下载 VIP

相关代码

				% ADAMS VARIABLE STEP-SIZE PREDICTOR-CORRECTOR ALGORITHM 5.5
				%
				% To approximate the solution of the initial value problem
				%        y' = f( t, y ), a 				%
				% with local truncation error within a given tolerance:
				%
				% INPUT:   endpoints a, b; initial condition ALPHA; tolerance TOL;
				%          maximum step size HMAX; minimum step size HMIN.
				%
				% OUTPUT:  I, T(I), W(I), H where at the Ith step W(I) approximates
				%          y(T(I)) and step size H was used or a message that the
				%          minimum step size was exceeded.
				 syms('OK', 'A', 'B', 'ALPHA', 'TOL', 'HMIN', 'HMAX');
				 syms('FLAG', 'NAME', 'OUP',  'DONE', 'KK', 'NFLAG');
				 syms('I', 'WP', 'WC', 'SIG', 'K', 'J', 'Q');
				 syms('W','T','t','y','s','TT','WW','K1','K2','K3','K4');
				 syms('P1','P2');
				 TRUE = 1;
				 FALSE = 0;
				% STEP 1  Runge-Kutta Order 4 Method is implemented within the
				%         following code.
				 fprintf(1,'This is the Adams Variable Step-size Predictor-');
				 fprintf(1,'Corrector Method\n');
				 fprintf(1,'Input the function F(t,y) in terms of t and y\n');
				 fprintf(1,'For example: y-t^2+1 \n');
				 s = input(' ','s');
				 F = inline(s,'t','y');
				 OK = FALSE;
				 while  OK == FALSE
				 fprintf(1,'Input left and right endpoints on separate lines.\n');
				 A = input(' ');
				 B = input(' ');
				 if A >= B
				 fprintf(1,'Left endpoint must be less than right endpoint.\n');
				 else
				 OK = TRUE;
				 end;
				 end;
				 OK = FALSE;
				 fprintf(1,'Input the initial condition.\n');
				 ALPHA = input(' ');
				 while OK == FALSE
				 fprintf(1,'Input tolerance.\n');
				 TOL = input(' ');
				 if TOL 				 fprintf(1,'Tolerance must be positive.\n');
				 else
				 OK = TRUE;
				 end;
				 end;
				 OK = FALSE;
				 while OK == FALSE 
				 fprintf(1,'Input minimum and maximum mesh spacing  ');
				 fprintf(1,'on separate lines.\n');
				 HMIN = input(' ');
				 HMAX = input(' ');
				 if HMIN < HMAX & HMIN > 0 
				 OK = TRUE;
				 else
				 fprintf(1,'Minimum mesh spacing must be a  ');
				 fprintf(1,'positive real number and less than\n');
				 fprintf(1,'the maximum mesh spacing.\n');
				 end;
				 end;
				 if OK == TRUE 
				 fprintf(1,'Choice of output method:\n');
				 fprintf(1,'1. Output to screen\n');
				 fprintf(1,'2. Output to text file\n');
				 fprintf(1,'Please enter 1 or 2\n');
				 FLAG = input(' ');
				 if FLAG == 2 
				 fprintf(1,'Input the file name in the form - drive:\\name.ext\n');
				 fprintf(1,'For example   A:\\OUTPUT.DTA\n');
				 NAME = input(' ','s');
				 OUP = fopen(NAME,'wt');
				 else
				 OUP = 1;
				 end;
				 fprintf(OUP, 'ADAMS VARIABLE STEP-SIZE PREDICTOR CORRECTOR METHOD\n\n');
				 fprintf(OUP, '           t           w           h       sigma\n');
				% STEP 2
				 T = zeros(1,100);
				 W = zeros(1,100);
				 T(1) = A;
				 W(1) = ALPHA;
				 H = HMAX;
				% OK is used in place of FLAG to exit the loop in Step 4.
				 OK = TRUE;
				% DONE is used in place of last to indicate when last value 
				% is calculated
				 DONE = FALSE;
				% STEP 3
				 for KK = 1:3
				 X = T(KK);
				 Y = W(KK);
				 K1 = H*F(X,Y);
				 K2 = H*F(X+0.5*H,Y+0.5*K1);
				 K3 = H*F(X+0.5*H,Y+0.5*K2);
				 K4 = H*F(X+H,Y+K3);
				 WW = Y+(K1+2.0*(K2+K3)+K4)/6.0;
				 TT = X+H;
				 T(KK+1) = TT;
				 W(KK+1) = WW;
				 end;
				% NFLAG indicates the computation from RK4
				 NFLAG = 1;
				 I = 5;
				% use TT in place of t
				 TT = T(4) + H;
				% STEP 4
				 while DONE == FALSE
				% STEP 5
				% predict W(I)
				 P1 = 55.0*F(T(I-1),W(I-1))-59.0*F(T(I-2),W(I-2));
				 P2 = 37.0*F(T(I-3),W(I-3))-9.0*F(T(I-4),W(I-4));
				 WP = W(I-1)+H*(P1+P2)/24.0;
				% correct W(I)
				 P1 = 9.0*F(TT,WP)+19.0*F(T(I-1),W(I-1))-5.0*F(T(I-2),W(I-2));
				 P2 = F(T(I-3),W(I-3));
				 WC = W(I-1)+H*(P1+P2)/24.0;
				 SIG = 19.0*abs(WC-WP)/(270.0*H);
				% STEP 6
				 if SIG 				% STEP 7
				% result accepted
				 W(I) = WC;
				 T(I) = TT;
				% STEP 8
				 if NFLAG == 1 
				 K = I-3;
				 KK = I-1;
				% Previous results are also accepted.
				 for J = K:KK
				 fprintf(OUP, '%12.8f %11.8f %11.8f %11.8f\n', T(J), W(J), H, SIG);
				 end;
				 fprintf(OUP, '%12.8f %11.8f %11.8f %11.8f\n', T(I), W(I), H, SIG);
				 else
				% Previous results were already accepted.
				 fprintf(OUP, '%12.8f %11.8f %11.8f %11.8f\n', T(I), W(I), H, SIG);
				 end;
				% STEP 9
				 if OK == FALSE 
				% Next step is 20.
				 DONE = TRUE;
				 else
				% STEP 10
				 I = I+1;
				 NFLAG = 0;
				% STEP 11
				 if SIG  B 
				% Increase H if more accuracy than required has been obtained, 
				% or decrease H to include b as a mesh point.
				% STEP 12
				% to avoid underflow
				 if SIG 				 Q = 4.0;
				 else
				 Q = (0.5*TOL/SIG)^(1/4);
				 end;
				% STEP 13
				 if Q > 4.0 
				 H = 4.0*H;
				 else
				 H = Q * H;
				 end;
				% STEP 14
				 if H > HMAX 
				 H = HMAX;
				 end;
				% STEP 15
				 if T(I-1)+4.0*H > B 
				 H = 0.25*(B-T(I-1));
				 if H < TOL 
				 DONE = TRUE;
				 end;
				 OK = FALSE;
				 end;
				% STEP 16
				 for KK = I-1:I+2
				 X = T(KK);
				 Y = W(KK);
				 K1 = H*F(X,Y);
				 K2 = H*F(X+0.5*H,Y+0.5*K1);
				 K3 = H*F(X+0.5*H,Y+0.5*K2);
				 K4 = H*F(X+H,Y+K3);
				 WW = Y+(K1+2.0*(K2+K3)+K4)/6.0;
				 TT = X+H;
				 T(KK+1) = TT;
				 W(KK+1) = WW;
				 end;
				 NFLAG = 1;
				 I = I+3;
				 end;
				 end;
				 else
				% FALSE branch for Step 6 - result rejected.
				% STEP 17
				 Q = (0.5*TOL/SIG)^(1/4);
				% STEP 18
				 if Q < 0.1 
				 H = 0.1 * H;
				 else
				 H = Q * H;
				 end;
				% STEP 19
				 if H < HMIN 
				 fprintf(OUP, 'HMIN exceeded\n');
				 DONE = TRUE;
				 else
				 if T(I-1)+4.0*H > B 
				 H = 0.25*(B-T(I-1));
				 end;
				 if NFLAG == 1 
				% Previous results also rejected.
				 I = I-3;
				 end;
				 for KK = I-1:I+2
				 X = T(KK);
				 Y = W(KK);
				 K1 = H*F(X,Y);
				 K2 = H*F(X+0.5*H,Y+0.5*K1);
				 K3 = H*F(X+0.5*H,Y+0.5*K2);
				 K4 = H*F(X+H,Y+K3);
				 WW = Y+(K1+2.0*(K2+K3)+K4)/6.0;
				 TT = X+H;
				 T(KK+1) = TT;
				 W(KK+1) = WW;
				 end;
				 I = I+3;
				 NFLAG = 1;
				 end;
				 end;
				% STEP 20
				 TT = T(I-1) + H;
				 end;
				% STEP 21
				 if OUP ~= 1 
				 fclose(OUP);
				 fprintf(1,'Output file %s created successfully \n',NAME);
				 end;
				 end;
							

相关资源