几个数值分析的例子

源代码在线查看: 几个数值分析的算法例子.txt

软件大小: 3 K
上传用户: woainijiajia123
关键词: 数值分析
下载地址: 免注册下载 普通下载 VIP

相关代码

				几个数值分析的算法例子主站首页 ● 视频下载 ● 书籍下载 ● 软件下载 ● 论坛交流 ● 综合娱乐 ● 站内搜索 ● 网站地图
				
				
				      豆豆技术网----中国最大的计算机教程网,伴你学习,助你成长的良师益友!
				            几个数值分析的算法例子
				                   作者:未知 更新人:Legume  来源:开发者俱乐部 更新时间:2004.08.05  投稿信箱: 
				                  jc@ddvip.net
				
				
				                  
				                  				                  '几个参考点的数据已经给出,输入参数只有 X
				
				                  function view(result,inputx)'输出结果,同时如果0,就在前面补0
				                  if result0 then result=0&result
				                  Response.Write "计算结果:"&""
				                  Response.Write "F("&inputx&")="& result
				                  end function
				
				
				                  '********分段线性Lagrange插值**********
				                  function Lagrange1(inputx)
				                  dim k,i
				                  dim x,y
				                  x=array("0.1","0.2","0.3","0.4")
				                  y=array("0.0998","0.1987","0.2955","0.3894")
				
				                  if inputx				                  if inputx>x(3) then k=2
				
				                  for i=0 to 2
				                  if inputx>=x(i) and inputx				                  result=((inputx-x(k+1))/(x(k)-x(k+1)))*y(k) + 
				                  ((inputx-x(k))/(x(k+1)-x(k)))*y(k+1)
				                  next
				                  result= view(result,inputx)
				                  end function?
				
				
				
				
				                  '********分段三点二次Lagrange插值**********
				                  function Lagrange2(inputx)
				                  dim i,j,k,t
				                  dim x,y
				                  result=0
				                  x=array("0.1","0.2","0.3","0.4")
				                  y=array("0.0998","0.1987","0.2955","0.3894")
				
				                  if inputx				                  if inputx>=x(2) then k=1
				                  if inputx>x(1) and inputx				                  abs(inputx-x(1))				
				
				                  for j=k to k+2 
				                  t=1
				                  for i= k to k+2 
				                  if ij then
				                  t= t * (inputx-x(i))/(x(j)-x(i))
				                  end if
				                  next
				                  result = result + t*y(j)
				                  next
				                  result= view(result,inputx)
				                  end function 
				
				
				                  '**********一元n点拉格朗日插值***********
				                  function Lagrange3(inputx)
				                  dim i,j
				                  dim x,y
				                  result=0
				                  x=array("0","0.1","0.195","0.4","0.401","0.5")
				                  y=array("0.39894","0.39695","0.39142","0.38138","0.36812","0.35206")
				
				                  for j=0 to 5 
				                  t=1
				                  for i=0 to 5
				                  if ij then
				                  t= t * (inputx-x(i))/(x(j)-x(i))
				                  end if
				                  next
				                  result = result + t * y(j)
				                  next
				                  result= view(result,inputx)
				                  end function 
				
				
				
				                  '***********牛顿(Newton)插值***********
				                  function Newton(inputx)
				                  dim x,y
				                  dim i,j
				                  result=0.39894
				                  t=1
				                  x=array("0","0.1","0.195","0.3","0.401","0.5")
				                  y=array("0.39894","0.39695","0.39142","0.38138","0.36812","0.35206")
				
				                  for j=1 to 5
				                  t=t*(inputx - x(j-1))
				                  for i=0 to 5-j 
				                  y(i)=(y(i+1) - y(i)) / (x(i+j) - x(i)) 
				                  next
				                  result = result + t * y(0)
				                  next
				                  result= view(result,inputx)
				                  end function
				
				
				                  '***********埃特金(Aitken)插值***********
				                  function Aitken(inputx)
				                  dim i,j
				                  dim x,y
				                  x=array("0.5","0.65","0.8","1.0")
				                  y=array("0.4794","0.6052","0.7174","0.8415")
				                  for j=1 to 3
				                  for i=j to 3
				                  y(i)=y(j-1) + (y(i)-y(j-1)) / (x(i)-x(j-1))* (inputx-x(j-1))
				                  next
				                  next
				
				                  result= view(y(3),inputx)
				                  end function
				
				
				                  '***********分段两点三次埃(厄)尔米特(Hermit)插值***********
				                  function Hermit(inputx)
				                  dim i,k
				                  dim x,y,yy
				                  x=array("0.1","0.3","0.5")
				                  y=array("0.099833","0.295520","0.479426")
				                  yy=array("0.995004","0.995336","0.877583")
				
				                  if inputx				                  if inputx>=x(2) then k=1
				                  for i=0 to 1
				                  if x(i)				                  next
				
				                  hx1=(1+2*(inputx-x(k)) / (x(k+1)-x(k))) * mul((x(k+1)-inputx) 
				                  / (x(k+1)-x(k)))
				                  hx2=(1+2*(x(k+1)-inputx) / (x(k+1)-x(k))) * mul((inputx-x(k)) 
				                  / (x(k+1)-x(k)))
				                  hx3=(inputx - x(k))* mul((x(k+1)-inputx)/(x(k+1)-x(k)))
				                  hx4=(inputx - x(k+1))* mul((inputx-x(k))/(x(k+1)-x(k)))
				
				                  result=y(k)*hx1 + y(k+1)*hx2 + yy(k)*hx3 + yy(k+1)*hx4
				                  result= view(result,inputx)
				                  endfunction
				
				                  function mul(str)
				                  mul=str*str
				                  end function
				
				                  %>
				                   
				
				             
				
				
				
				            本站部分教程收集于网络,版权归原作者及出版社所有
				            如果您觉得侵犯了您的版权请来信告诉我们,我们会尽快删除其内容! 
				            本站原创文章版权归本站所有,除特别申明外,大家可以自由转载,但原作者和来自本站的链接必须保留!
				
				
				
				
				            投稿信箱 错误报告 联系管理员 
				            版权声明 | 刊登广告 | 友情链接 | 网站地图 | 关于豆豆技术 
				            © 所有版权归豆豆技术 
				
							

相关资源