Using Jacobi method and Gauss-Seidel iterative methods to solve the following system The required precision is =0.00001, and the maximum iteration number N=25. Compare the number of iterations and the convergence of these two methods
资源简介:Using Jacobi method and Gauss-Seidel iterative methods to solve the following system The required precision is   =0.00001, and the maximum iteration number N=25. Compare the number of iterations and the convergence of thes...
上传时间: 2016-02-06
上传用户:zmy123
资源简介:We can see that using Gauss-Seidel iterative methods need only 13 timed to make           But using Jacobi method after 25 times the    is bigger t...
上传时间: 2016-02-06
上传用户:sjyy1001
资源简介:The Gauss鈥揝eidel method is a technique used to solve a linear system of equations.
上传时间: 2017-04-29
上传用户:xuanchangri
资源简介:The False-Position method to solve a linear equation The Bisection method to solve linear equation Jacobi Iteration on a 3D plane
上传时间: 2014-09-11
上传用户:kelimu
资源简介:These are the examples from the following book: The C++ Standard Library - A Tutorial and Reference
上传时间: 2014-01-16
上传用户:lindor
资源简介:A guide to Matlab for Beginners and experienced users, A Guide to MATLAB Object Oriented Programming, The Handbook Of Data Mining, Matlab - Creating Graphical User Interfaces,
上传时间: 2017-06-12
上传用户:cccole0605
资源简介:For the incomplete methods, we kept the representation of the queens by a table and the method of calculation to determine if two queens are in conflict, which is much faster for this kind of problems than the representation by a matrix. h...
上传时间: 2015-05-05
上传用户:1159797854
资源简介:本题采用的计算方法为:主要用Jacobi迭代和Gauss-Seidel迭代解线性方程组。 Jacobi迭代算法思路:由方程组 ,使等式左端仅保留向量 ,其他一概放到右端,将 代入上式右端,便可(按顺序逐行)进行计算得到 。 Gauss-Seidel迭代和Jacobi迭代不同的是先计算第...
上传时间: 2015-10-22
上传用户:顶得柱
资源简介:2. Using Gaussian elimination method and Gaussian elimination method with row scaled method to solve the following tri-diagonal system for n=10 and 100
上传时间: 2013-12-31
上传用户:lyy1234
资源简介:1. Using power method to find the eigenvalue with maximum modulus and its eigenvector for the following matrixes
上传时间: 2014-01-05
上传用户:kytqcool