delta modulation source code

源代码在线查看: ai_raych.m

软件大小: 3 K
上传用户: rentianchou
关键词: modulation source delta code
下载地址: 免注册下载 普通下载 VIP

相关代码

				% 
				%
				% Rayleigh Fading Channel Signal Generator 
				% Usage:
				% [omega_mTau, Tk] = 
				% ai_RayCh(NumAngles, Length, SymbolRate, NumWaveforms, CarrierFreq, Velocity)
				%
				% Where the output omega_mTau is a time scaling factor for plotting
				% normalized correlations. The LAGS value output by [C,LAGS] = XCORR(...)
				% should be multiplied by the omega_mTau scaling factor to properly display
				% axis. Tk is a two dimensional vector [M, N] = SIZE(Tk) with
				% M=numWaverorms and N=Length specified in the RayCh(...) function call
				%
				% And the input variables are:
				%
				% NumAngles - scalar power of 2, NumAngles > 2^7 is used to specify the
				% number of equally strong rays arriving at the receiver. It used to
				% compute the number of oscillators in the Dent model with N0 = numAngles/4
				%
				% Length - scalar preferably power of 2 for faster computation, Length > 2^17
				% is used to specify the length of the generated sequence. Lengths near 1E6
				% are close to realistic signals
				% 
				% SymbolRate - scalar power of 2 and is in kilo-symbols-per-sec is used to
				% specify what should be the transmission data rate. Slower rates will
				% provide slowly fading channels. Normal voice and soem data rates are
				% 64-256 ksps
				%
				% NumWaveforms - scalar used to specify how many 'k' waveforms to generate
				% in the model. NumWaveforms > 2 to properly display plots
				% 
				% CarrierFreq - scalar expressed in MHz is the carrier frequency of the
				% tranmitter. Normally 800 or 1900 MHz for mobile comms
				%
				% Velocity - scalar expressed in km/hr is the speed of the receiver. 
				% 100 km/hr = 65 mi/hr. Normal values are 20-130 km/hr
				% 
				% Usage Examples:
				% [omega_mTau, Tk] = ai_RayCh(2^7, 2^18, 64, 2, 900, 100)
				% 
				% where
				%
				% NumAngles=2^7, Length=2^18, symbolRate=64, NumWaveforms=2, carrierFreq=900, Velocity=100
				% [omega_mTau, Tk] = RayCh(NumAngles, Length, symbolRate, NumWaveforms,
				% carrierFreq, Velocity);
				%
				%
				
				
				function [omega_mTau, Tk] = ai_RayCh(NumAngles, Length, symbolRate, NumWaveforms, carrierFreq, Velocity)
				
				% Number of oscillators
				N0s = NumAngles/4;
				% Maximum Doppler shift of carrier at some wavelength
				omega_m = (2*pi) * carrierFreq;
				% specify variance of the Rayleigh channel
				% use this for *constant* variange - requires changing other params in prog
				sigma2 = 10;
				% make sigma2 a gaussian RV around u = sigma2 and var = sigma2/5
				% use for *non constant* variaance - requires changing other params in prog
				sigma2 = sigma2 + sqrt(sigma2/5) .* randn(1,NumWaveforms);
				% Initialize phases
				alpha_n = []; beta_n = []; theta_nk = []; 
				% make a hadamard matrix
				Ak = hadamard(N0s);
				% determine phase values 'alpha' and 'beta'
				n=(1:N0s);
				alpha_n = 2*pi*n/NumAngles - pi/NumAngles;
				beta_n = pi*n/N0s;
				
				% convert to time scale using 'fs' sampling frequency
				t=(1/(symbolRate*1000):1/(symbolRate*1000):1/(symbolRate*1000) * Length);
				
				Tk = [];
				for q = 1 : NumWaveforms
				
				    rand('state',sum(100*clock))                % reset randomizer
				    theta_nk = rand(1,length(n)) * 2 *pi;       % create uniform random phase in range [0,2pi]
				
				    sumRes = 0;
					for i = 1 : N0s
				        term1 = Ak(NumWaveforms,i);
				        term2 = cos(beta_n(i)) + j*sin(beta_n(i));
				        term3 = cos(omega_m .* t .* cos(alpha_n(i)) + theta_nk(i));
				        sumRes = sumRes + (term1 .* term2 .* term3);
					end
				    
				    Tk(q,:) = sqrt(2/N0s) .* sumRes;
				    % use line below to apply *non-constant* variance 
				    Tk(q,:) = repmat(10.^(sigma2(q)/20),1, Length) .* Tk(q,:); %apply variable in dB 
				
				end
				
				% apply *constant* variance unilaterly in dB 
				% Tk = repmat(10^(sigma2/20), k, Length) .* Tk; 
				
				
				% plot results
				figure(20); subplot(3,1,1); semilogy(t,abs(Tk(1,:)));
				xlabel('Time (sec)'); ylabel('Signal Strength (dB)'); 
				title(['Received Envelope, Symbol Rate = ', num2str(symbolRate), ',Carrier = ', num2str(carrierFreq), ', Velocity = ', num2str(Velocity)]);
				% compute auto and cross correlations and plot them
				omega_mTau = (1/(symbolRate*1000)) * (omega_m/(2*pi));    % compute omega_m * tau scaling
				[C1, Lags] = crosscorr(Tk(1,:), Tk(2,:), 20000);
				[C2, Lags2] = autocorr(Tk(1,:),  20000);
				figure(20); subplot(3,1,3); plot(Lags * omega_mTau, C1);
				xlabel('Normalized Time Delay'); ylabel('Normalized Crosscorrelation'); 
				title('Crosscorrelation between waveforms k=1 and k=2');
				figure(20); subplot(3,1,2); plot(Lags2 * omega_mTau, C2);
				xlabel('Normalized Time Delay'); ylabel('Normalized Autocorrelation'); 
				title('Autocorrelation of the first waveform k=1');
				
				
				
				
							

相关资源