偏最小二乘算法在MATLAB中的实现

源代码在线查看: plscvbkf.m

软件大小: 421 K
上传用户: dsjacky
关键词: MATLAB 算法 中的实现
下载地址: 免注册下载 普通下载 VIP

相关代码

				function [press,cumpress,minlv,b] = plscvbkf(x,y,split,lv)
				%PLSCVBKF Fast Cross validation for PLS using contiguous data blocks
				%  This function is primarily intended for use with GENALG
				%  Inputs are the matrix of predictor variables (x), vector
				%  of predicted variable (y), number of divisions of the data
				%  (split),  and maximum number of latent variables to calculate (lv).
				%  Outputs are the prediction residual error sum of squares for each 
				%  test set (press), cumulative PRESS (cumpress), number of latent 
				%  variables at minimum PRESS (minlv), and the final regression vector 
				%  (b) at minimum PRESS.  
				%  
				%  This cross validation routine forms the test sets out of 
				%  contiguous blocks of data. Note that this routine does not
				%  mean center each test set. The primary emphasis for this routine
				%  is speed.
				%
				%  I/O format is: 
				%  [press,cumpress,minlv,b] = plscvbkf(x,y,split,lv);
				
				%  Copyright
				%  Eigenvector Technologies
				%  1995
				
				[mx,nx] = size(x);
				[my,ny] = size(y);
				if mx ~= my
				  error('Number of samples must be the same in both blocks')
				end
				press = zeros(split,lv);
				ind = ones(split,2);
				for i = 1:split
				  ind(i,2) = round(i*mx/split);
				end 
				for i = 1:split-1
				  ind(i+1,1) = ind(i,2) +1;
				end
				for i = 1:split
				  calx = [x(1:ind(i,1)-1,:); x(ind(i,2)+1:mx,:)];
				  testx = x(ind(i,1):ind(i,2),:);
				  caly = [y(1:ind(i,1)-1,:); y(ind(i,2)+1:mx,:)];
				  testy = y(ind(i,1):ind(i,2),:);
				  bbr = simpls1(calx,caly,lv);
				  for j = 1:lv
				    ypred = testx*bbr((j-1)*ny+1:j*ny,:)';
				    press(i,j) = sum(sum((ypred-testy).^2));
				  end
				end
				cumpress = sum(press);
				[a,minlv] = min(cumpress);
				if nargout > 3
				  b = simpls1(x,y,minlv);
				  b = b(minlv,:);
				end
				
							

相关资源