% function [L,Ph,LL]=ffa(X,K,cyc,tol);
%
% Fast Maximum Likelihood Factor Analysis using EM
%
% X - data matrix
% K - number of factors
% cyc - maximum number of cycles of EM (default 100)
% tol - termination tolerance (prop change in likelihood) (default 0.0001)
%
% L - factor loadings
% Ph - diagonal uniquenesses matrix
% LL - log likelihood curve
%
% Iterates until a proportional change < tol in the log likelihood
% or cyc steps of EM
%
function [L,Ph,LL]=ffa(X,K,cyc,tol);
if nargin if nargin
N=length(X(:,1));
D=length(X(1,:));
tiny=exp(-700);
X=X-ones(N,1)*mean(X);
XX=X'*X/N;
diagXX=diag(XX);
randn('seed', 0);
cX=cov(X);
scale=det(cX)^(1/D);
L=randn(D,K)*sqrt(scale/K);
Ph=diag(cX);
I=eye(K);
lik=0; LL=[];
const=-D/2*log(2*pi);
for i=1:cyc;
%%%% E Step %%%%
Phd=diag(1./Ph);
LP=Phd*L;
MM=Phd-LP*inv(I+L'*LP)*LP';
dM=sqrt(det(MM));
beta=L'*MM;
XXbeta=XX*beta';
EZZ=I-beta*L +beta*XXbeta;
%%%% Compute log likelihood %%%%
oldlik=lik;
lik=N*const+N*log(dM)-0.5*N*sum(diag(MM*XX));
fprintf('cycle %i lik %g \n',i,lik);
LL=[LL lik];
%%%% M Step %%%%
L=XXbeta*inv(EZZ);
Ph=diagXX-diag(L*XXbeta');
if (i likbase=lik;
elseif (lik disp('VIOLATION');
elseif ((lik-likbase) break;
end;
end