贝叶斯网络matlab源程序,可用于分类,欢迎大家下载测试

源代码在线查看: oil1.m

软件大小: 1685 K
上传用户: a369100057
关键词: matlab 贝叶斯 网络 源程序
下载地址: 免注册下载 普通下载 VIP

相关代码

				% oil wildcatter influence diagram in Cowell et al p172								T = 1; UT = 2; O = 3; R = 4; D = 5; UD = 6;				N = 6;				dag = zeros(N);				dag(T, [UT R D]) = 1;				dag(O, [R UD]) = 1;				dag(R, D) = 1;				dag(D, UD) = 1;								ns = zeros(1,N);				ns(O) = 3; ns(R) = 4; ns(T) = 2; ns(D) = 2; ns(UT) = 1; ns(UD) = 1;								limid = mk_limid(dag, ns, 'chance', [O R], 'decision', [T D], 'utility', [UT UD]);								limid.CPD{O} = tabular_CPD(limid, O, [0.5 0.3 0.2]);				tbl = [0.6 0 0.3 0 0.1 0  0.3 0 0.4 0 0.4 0  0.1 0 0.3 0 0.5 0  0 1 0 1 0 1];				limid.CPD{R} = tabular_CPD(limid, R, tbl);								limid.CPD{UT} = tabular_utility_node(limid, UT,  [-10 0]);				limid.CPD{UD} = tabular_utility_node(limid, UD, [-70 50 200  0 0 0]);								if 1				  % start with uniform policies				  limid.CPD{T} = tabular_decision_node(limid, T);				  limid.CPD{D} = tabular_decision_node(limid, D);				else				  % hard code optimal policies				  limid.CPD{T} = tabular_decision_node(limid, T, [1.0 0.0]);        				  a = 0.5; b = 1-a; % arbitrary value				  tbl = myreshape([0 a 1 a 1 a a a  1 b 0 b 0 b b b], ns([T R D]));				  limid.CPD{D} = tabular_decision_node(limid, D,  tbl);				end								fname = '/home/cs/murphyk/matlab/Misc/loopybel.txt';								engines = {};				engines{end+1} = global_joint_inf_engine(limid);				engines{end+1} = jtree_limid_inf_engine(limid);				%engines{end+1} = belprop_inf_engine(limid, 'max_iter', 3*N, 'filename', fname);								exact = [1 2];				%approx = 3;				approx = [];								E = length(engines);				strategy = cell(1, E);				MEU = zeros(1, E);				for e=1:E				  [strategy{e}, MEU(e)] = solve_limid(engines{e});				  MEU				end				MEU								for e=exact(:)'				  assert(approxeq(MEU(e), 22.5))				  assert(argmax(strategy{e}{T} == 1)); % test = yes				  t = 1; % test = yes				  for r=[2 3] % OpS, ClS				    assert(argmax(squeeze(strategy{e}{D}(t,r,:))) == 1); % drill = yes				  end				  r = 1; % noS				  assert(argmax(squeeze(strategy{e}{D}(t,r,:))) == 2); % drill = no				end												for e=approx(:)'				  approxeq(strategy{exact(1)}{T}, strategy{e}{T})				  approxeq(strategy{exact(1)}{D}, strategy{e}{D})				end							

相关资源