% function [L,Ph,LL]=ffa(X,K,cyc,tol); % % Fast Maximum Likelihood Factor Analysis using EM % % X - data matrix % K - number of factors % cyc - maximum number of cycles of EM (default 100) % tol - termination tolerance (prop change in likelihood) (default 0.0001) % % L - factor loadings % Ph - diagonal uniquenesses matrix % LL - log likelihood curve % % Iterates until a proportional change < tol in the log likelihood % or cyc steps of EM % function [L,Ph,LL]=ffa(X,K,cyc,tol); if nargin if nargin N=length(X(:,1)); D=length(X(1,:)); tiny=exp(-700); X=X-ones(N,1)*mean(X); XX=X'*X/N; diagXX=diag(XX); randn('seed', 0); cX=cov(X); scale=det(cX)^(1/D); L=randn(D,K)*sqrt(scale/K); Ph=diag(cX); I=eye(K); lik=0; LL=[]; const=-D/2*log(2*pi); for i=1:cyc; %%%% E Step %%%% Phd=diag(1./Ph); LP=Phd*L; MM=Phd-LP*inv(I+L'*LP)*LP'; dM=sqrt(det(MM)); beta=L'*MM; XXbeta=XX*beta'; EZZ=I-beta*L +beta*XXbeta; %%%% Compute log likelihood %%%% oldlik=lik; lik=N*const+N*log(dM)-0.5*N*sum(diag(MM*XX)); fprintf('cycle %i lik %g \n',i,lik); LL=[LL lik]; %%%% M Step %%%% L=XXbeta*inv(EZZ); Ph=diagXX-diag(L*XXbeta'); if (i likbase=lik; elseif (lik disp('VIOLATION'); elseif ((lik-likbase) break; end; end