遗传算法的一些应用

源代码在线查看: 遗传算法.txt

软件大小: 15 K
上传用户: l2335800
关键词: 算法
下载地址: 免注册下载 普通下载 VIP

相关代码

				***************************************************************/ 
				/* This is a simple genetic algorithm implementation where the */ 
				/* evaluation function takes positive values only and the      */ 
				/* fitness of an individual is the same as the value of the    */ 
				/* objective function                                          */ 
				/***************************************************************/ 
				
				#include  
				#include  
				#include  
				
				/* Change any of these parameters to match your needs */ 
				
				#define POPSIZE 50               /* population size */ 
				#define MAXGENS 1000             /* max. number of generations */ 
				#define NVARS 3                  /* no. of problem variables */ 
				#define PXOVER 0.8               /* probability of crossover */ 
				#define PMUTATION 0.15           /* probability of mutation */ 
				#define TRUE 1 
				#define FALSE 0 
				
				int generation;                  /* current generation no. */ 
				int cur_best;                    /* best individual */ 
				FILE *galog;                     /* an output file */ 
				
				struct genotype /* genotype (GT), a member of the population */ 
				{ 
				 double gene[NVARS];        /* a string of variables */ 
				 double fitness;            /* GT's fitness */ 
				 double upper[NVARS];       /* GT's variables upper bound */ 
				 double lower[NVARS];       /* GT's variables lower bound */ 
				 double rfitness;           /* relative fitness */ 
				 double cfitness;           /* cumulative fitness */ 
				}; 
				
				struct genotype population[POPSIZE+1];    /* population */ 
				struct genotype newpopulation[POPSIZE+1]; /* new population; */ 
				                                         /* replaces the */ 
				                                         /* old generation */ 
				
				/* Declaration of procedures used by this genetic algorithm */ 
				
				void initialize(void); 
				double randval(double, double); 
				void evaluate(void); 
				void keep_the_best(void); 
				void elitist(void); 
				void select(void); 
				void crossover(void); 
				void Xover(int,int); 
				void swap(double *,double *); 
				void mutate(void); 
				void report(void); 
				
				/***************************************************************/ 
				/* Initialization function: Initializes the values of genes    */ 
				/* within the variables bounds. It also initializes (to zero)  */ 
				/* all fitness values for each member of the population. It    */ 
				/* reads upper and lower bounds of each variable from the      */ 
				/* input file `gadata.txt'. It randomly generates values       */ 
				/* between these bounds for each gene of each genotype in the  */ 
				/* population. The format of the input file `gadata.txt' is    */ 
				/* var1_lower_bound var1_upper bound                           */ 
				/* var2_lower_bound var2_upper bound ...                       */ 
				/***************************************************************/ 
				
				void initialize(void) 
				{ 
				FILE *infile; 
				int i, j; 
				double lbound, ubound; 
				
				if ((infile = fopen("gadata.txt","r"))==NULL) 
				     { 
				     fprintf(galog,"\nCannot open input file!\n"); 
				     exit(1); 
				     } 
				
				/* initialize variables within the bounds */ 
				
				for (i = 0; i < NVARS; i++) 
				     { 
				     fscanf(infile, "%lf",&lbound); 
				     fscanf(infile, "%lf",&ubound); 
				
				     for (j = 0; j < POPSIZE; j++) 
				          { 
				          population[j].fitness = 0; 
				          population[j].rfitness = 0; 
				          population[j].cfitness = 0; 
				          population[j].lower = lbound; 
				          population[j].upper= ubound; 
				          population[j].gene = randval(population[j].lower, 
				                                  population[j].upper); 
				          } 
				     } 
				
				fclose(infile); 
				} 
				
				/***********************************************************/ 
				/* Random value generator: Generates a value within bounds */ 
				/***********************************************************/ 
				
				double randval(double low, double high) 
				{ 
				double val; 
				val = ((double)(rand()%1000)/1000.0)*(high - low) + low; 
				return(val); 
				} 
				
				/*************************************************************/ 
				/* Evaluation function: This takes a user defined function.  */ 
				/* Each time this is changed, the code has to be recompiled. */ 
				/* The current function is:  x[1]^2-x[1]*x[2]+x[3]           */ 
				/*************************************************************/ 
				
				void evaluate(void) 
				{ 
				int mem; 
				int i; 
				double x[NVARS+1]; 
				
				for (mem = 0; mem < POPSIZE; mem++) 
				     { 
				     for (i = 0; i < NVARS; i++) 
				           x[i+1] = population[mem].gene; 
				      
				     population[mem].fitness = (x[1]*x[1]) - (x[1]*x[2]) + x[3]; 
				     } 
				} 
				
				/***************************************************************/ 
				/* Keep_the_best function: This function keeps track of the    */ 
				/* best member of the population. Note that the last entry in  */ 
				/* the array Population holds a copy of the best individual    */ 
				/***************************************************************/ 
				
				void keep_the_best() 
				{ 
				int mem; 
				int i; 
				cur_best = 0; /* stores the index of the best individual */ 
				
				for (mem = 0; mem < POPSIZE; mem++) 
				     { 
				     if (population[mem].fitness > population[POPSIZE].fitness) 
				           { 
				           cur_best = mem; 
				           population[POPSIZE].fitness = population[mem].fitness; 
				           } 
				     } 
				/* once the best member in the population is found, copy the genes */ 
				for (i = 0; i < NVARS; i++) 
				     population[POPSIZE].gene = population[cur_best].gene; 
				} 
				
				/****************************************************************/ 
				/* Elitist function: The best member of the previous generation */ 
				/* is stored as the last in the array. If the best member of    */ 
				/* the current generation is worse then the best member of the  */ 
				/* previous generation, the latter one would replace the worst  */ 
				/* member of the current population                             */ 
				/****************************************************************/ 
				
				void elitist() 
				{ 
				int i; 
				double best, worst;             /* best and worst fitness values */ 
				int best_mem, worst_mem; /* indexes of the best and worst member */ 
				
				best = population[0].fitness; 
				worst = population[0].fitness; 
				for (i = 0; i < POPSIZE - 1; ++i) 
				     { 
				     if(population.fitness > population[i+1].fitness) 
				           {       
				           if (population.fitness >= best) 
				                 { 
				                 best = population.fitness; 
				                 best_mem = i; 
				                 } 
				           if (population[i+1].fitness 				                 { 
				                 worst = population[i+1].fitness; 
				                 worst_mem = i + 1; 
				                 } 
				           } 
				     else 
				           { 
				           if (population.fitness 				                 { 
				                 worst = population.fitness; 
				                 worst_mem = i; 
				                 } 
				           if (population[i+1].fitness >= best) 
				                 { 
				                 best = population[i+1].fitness; 
				                 best_mem = i + 1; 
				                 } 
				           } 
				     } 
				/* if best individual from the new population is better than */ 
				/* the best individual from the previous population, then    */ 
				/* copy the best from the new population; else replace the   */ 
				/* worst individual from the current population with the     */ 
				/* best one from the previous generation                     */ 
				
				if (best >= population[POPSIZE].fitness) 
				   { 
				   for (i = 0; i < NVARS; i++) 
				      population[POPSIZE].gene = population[best_mem].gene; 
				   population[POPSIZE].fitness = population[best_mem].fitness; 
				   } 
				else 
				   { 
				   for (i = 0; i < NVARS; i++) 
				      population[worst_mem].gene = population[POPSIZE].gene; 
				   population[worst_mem].fitness = population[POPSIZE].fitness; 
				   } 
				} 
				/**************************************************************/ 
				/* Selection function: Standard proportional selection for    */ 
				/* maximization problems incorporating elitist model - makes  */ 
				/* sure that the best member survives                         */ 
				/**************************************************************/ 
				
				void select(void) 
				{ 
				int mem, i, j, k; 
				double sum = 0; 
				double p; 
				
				/* find total fitness of the population */ 
				for (mem = 0; mem < POPSIZE; mem++) 
				     { 
				     sum += population[mem].fitness; 
				     } 
				
				/* calculate relative fitness */ 
				for (mem = 0; mem < POPSIZE; mem++) 
				     { 
				     population[mem].rfitness =  population[mem].fitness/sum; 
				     } 
				population[0].cfitness = population[0].rfitness; 
				
				/* calculate cumulative fitness */ 
				for (mem = 1; mem < POPSIZE; mem++) 
				     { 
				     population[mem].cfitness =  population[mem-1].cfitness +       
				                         population[mem].rfitness; 
				     } 
				
				/* finally select survivors using cumulative fitness. */ 
				
				for (i = 0; i < POPSIZE; i++) 
				     { 
				     p = rand()%1000/1000.0; 
				     if (p < population[0].cfitness) 
				           newpopulation = population[0];       
				     else 
				           { 
				           for (j = 0; j < POPSIZE;j++)       
				                 if (p >= population[j].cfitness && 
				                             p				                       newpopulation = population[j+1]; 
				           } 
				     } 
				/* once a new population is created, copy it back */ 
				
				for (i = 0; i < POPSIZE; i++) 
				     population = newpopulation;       
				} 
				
				/***************************************************************/ 
				/* Crossover selection: selects two parents that take part in  */ 
				/* the crossover. Implements a single point crossover          */ 
				/***************************************************************/ 
				
				void crossover(void) 
				{ 
				int i, mem, one; 
				int first  =  0; /* count of the number of members chosen */ 
				double x; 
				
				for (mem = 0; mem < POPSIZE; ++mem) 
				     { 
				     x = rand()%1000/1000.0; 
				     if (x < PXOVER) 
				           { 
				           ++first; 
				           if (first % 2 == 0) 
				                 Xover(one, mem); 
				           else 
				                 one = mem; 
				           } 
				     } 
				} 
				/**************************************************************/ 
				/* Crossover: performs crossover of the two selected parents. */ 
				/**************************************************************/ 
				
				void Xover(int one, int two) 
				{ 
				int i; 
				int point; /* crossover point */ 
				
				/* select crossover point */ 
				if(NVARS > 1) 
				  { 
				  if(NVARS == 2) 
				        point = 1; 
				  else 
				        point = (rand() % (NVARS - 1)) + 1; 
				
				  for (i = 0; i < point; i++) 
				       swap(&population[one].gene, &population[two].gene); 
				
				  } 
				} 
				
				/*************************************************************/ 
				/* Swap: A swap procedure that helps in swapping 2 variables */ 
				/*************************************************************/ 
				
				void swap(double *x, double *y) 
				{ 
				double temp; 
				
				temp = *x; 
				*x = *y; 
				*y = temp; 
				
				} 
				
				/**************************************************************/ 
				/* Mutation: Random uniform mutation. A variable selected for */ 
				/* mutation is replaced by a random value between lower and   */ 
				/* upper bounds of this variable                              */ 
				/**************************************************************/ 
				
				void mutate(void) 
				{ 
				int i, j; 
				double lbound, hbound; 
				double x; 
				
				for (i = 0; i < POPSIZE; i++) 
				     for (j = 0; j < NVARS; j++) 
				           { 
				           x = rand()%1000/1000.0; 
				           if (x < PMUTATION) 
				                 { 
				                 /* find the bounds on the variable to be mutated */ 
				                 lbound = population.lower[j]; 
				                 hbound = population.upper[j];   
				                 population.gene[j] = randval(lbound, hbound); 
				                 } 
				           } 
				} 
				
				/***************************************************************/ 
				/* Report function: Reports progress of the simulation. Data   */ 
				/* dumped into the  output file are separated by commas        */ 
				/***************************************************************/ 
				
				void report(void) 
				{ 
				int i; 
				double best_val;            /* best population fitness */ 
				double avg;                 /* avg population fitness */ 
				double stddev;              /* std. deviation of population fitness */ 
				double sum_square;          /* sum of square for std. calc */ 
				double square_sum;          /* square of sum for std. calc */ 
				double sum;                 /* total population fitness */ 
				
				sum = 0.0; 
				sum_square = 0.0; 
				
				for (i = 0; i < POPSIZE; i++) 
				     { 
				     sum += population.fitness; 
				     sum_square += population.fitness * population.fitness; 
				     } 
				
				avg = sum/(double)POPSIZE; 
				square_sum = avg * avg * POPSIZE; 
				stddev = sqrt((sum_square - square_sum)/(POPSIZE - 1)); 
				best_val = population[POPSIZE].fitness; 
				
				fprintf(galog, "\n%5d,      %6.3f, %6.3f, %6.3f \n\n", generation, 
				                                     best_val, avg, stddev); 
				} 
				
				/**************************************************************/ 
				/* Main function: Each generation involves selecting the best */ 
				/* members, performing crossover & mutation and then          */ 
				/* evaluating the resulting population, until the terminating */ 
				/* condition is satisfied                                     */ 
				/**************************************************************/ 
				
				void main(void) 
				{ 
				int i; 
				
				if ((galog = fopen("galog.txt","w"))==NULL) 
				     { 
				     exit(1); 
				     } 
				generation = 0; 
				
				fprintf(galog, "\n generation  best  average  standard \n"); 
				fprintf(galog, " number      value fitness  deviation \n"); 
				
				initialize(); 
				evaluate(); 
				keep_the_best(); 
				while(generation				     { 
				     generation++; 
				     select(); 
				     crossover(); 
				     mutate(); 
				     report(); 
				     evaluate(); 
				     elitist(); 
				     } 
				fprintf(galog,"\n\n Simulation completed\n"); 
				fprintf(galog,"\n Best member: \n"); 
				
				for (i = 0; i < NVARS; i++) 
				  { 
				  fprintf (galog,"\n var(%d) = %3.3f",i,population[POPSIZE].gene); 
				  } 
				fprintf(galog,"\n\n Best fitness = %3.3f",population[POPSIZE].fitness); 
				fclose(galog); 
				printf("Success\n"); 
				} 
				/***************************************************************/ 
							

相关资源